Dedication

I dedicated this work to my wife, Faiha, for her steadfast support, understanding, and patience.
Acknowledgment

First, praise is to Alla, the first cherisher substainer of the world, Acknowledgments Sea ports Corporation, Sudan University of Science & Technology, Communication Engineering teachers, I'm indebted to all of them because of their support and device.

They were all patient and generous in helping. Special acknowledgment to Dr. ABD AL RASOL JABAR ALZUBAIDY.

Who made the completion of this work possible in the first place by this advice and by the generous aid that he has offered to me. He has also been kind enough to follow me preparing the manuscript and to make constructive.
Abstract

Recently, digital data transmission has witnessed considerable importance. This is a result of huge increase in applications where data, voice, video, and multimedia are digitally processed in baseband modulation, however, the pulse wave form (mostly in PCM) is modified in such away as to suite transmission medium and thus often called digital line codes.

A general form of digital line codes are (NRZ-I, NRZ- L, NRZ-S) where explained in this research by using computer board system with electronic circuit design.

Finally describes the program software using C language and flow chart.
المستخلص

هذا البحث يقدم شرح مع تصميم دائرة الالكترونية رقمية تفعل بواسطة جهاز الحاسوب باستخدام برنامج كتب بلغة سي لغرض إتمام عملية التشفير الرقمي.

التشيفر الرقمي أنواع متعددة ولكن نوع يتم تفعيله برمجياً من خلال الحاسوب وتفعيل الدائرة الالكترونية الرقمية المتصلة بجهاز الحاسوب التي من خلالها يتم معرفة خصائص ومميزات كل نوع من أنواع التشفير الرقمي. مع استعراض بعض من الدوائر الالكترونية الرقمية التي عن طريقها تتم عملية التشفير الرقمي.

يمكن الاستفادة من هذا البحث كوسيلة إضافية للتشيفر الرقمي وطريقة المتغيرة ورؤية نتيجة كل عملية من عمليات التشفير الرقمي.
Table of Contents

<table>
<thead>
<tr>
<th>Topics</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>II</td>
</tr>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>المستخلص</td>
<td>IV</td>
</tr>
<tr>
<td>Table of contents</td>
<td>V</td>
</tr>
<tr>
<td>List of tables</td>
<td>VI</td>
</tr>
<tr>
<td>List of figures</td>
<td>IX</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>X</td>
</tr>
</tbody>
</table>

Chapter One: Introduction

1.1 Introduction 1
1.2 Problems statement 2
1.3 Objective 4
1.4 Mythology 4
1.4.1 PCM 4
1.4.2 Line Encoding 5
1.4.3 Analog-to-Digital 5
1.4.4 LPF and Sampling 6
1.4.5 Quantization 7
1.4.6 Binary Representation 8
1.5 Research out line 9

Chapter Two: Type of encoding

2.1 Digital data, digital signal 10
2.2 Lists of five evaluation factors 11
2.2.1 signal spectrum 11
2.2.2 clocking 11
2.2.3 Error detection 12
2.2.4 Signal interference and noise immunity 12
2.2.5 cost and complexity 12

2.3 Encoding schemes 13
2.3.1 unipolar Encoding or no return zero (NRZ) 15
2.3.2 multilevel binary 18
2.3.3 Bi Phase 19
3.3.3.1 Synchronization 19
3.3.3.2 No dc component 20
3.3.3.3 Error detection 20

Chapter Three: electronic circuit design

3.1 Composition of the circuits 23
3.1.1 function table 25
3.1.2 Block diagram 25
3.1.3 Testing method 26
3.2 ULN 2003 chip 26
3.2.1 Logic digram 28
3.2.2 Electrical characteristics 29
3.3 Step of design 31

Chapter Four: Software code

4.1 Uni polar (NRZ) code 35
4.1.1 Flow chart 35
4.2 NRZ- L code 39
4.2.1 Flow chart 39
4.3 NRZ- I code 43
4.3.1 Flow chart 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Five: Result & Discussion</td>
<td>48</td>
</tr>
<tr>
<td>Chapter Six: Conclusion & Recommendation</td>
<td>50</td>
</tr>
<tr>
<td>6.1 Conclusion</td>
<td>50</td>
</tr>
<tr>
<td>6.2 Recommendation</td>
<td>51</td>
</tr>
<tr>
<td>Reference</td>
<td>52</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>Appendix (A) HD 74LS 373 data sheet</td>
<td></td>
</tr>
<tr>
<td>Appendix (B) ULN 2001 A -2002 A - 2003 A data sheet</td>
<td></td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>A simple quantizer</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Gray code on our quantizer</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Definition of digital signal Encoding formats</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Definition of digital signal encoding formats</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>Function table</td>
<td>25</td>
</tr>
<tr>
<td>3.2</td>
<td>Electrical characteristics</td>
<td>29</td>
</tr>
<tr>
<td>3.3</td>
<td>Step of connecting form D- 25 connector to chips 74373</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Step of connecting from out put of chips 74373 to chip (3&4) ULN 2003</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Step of connecting fro chip (3&4) ULN 2003 to three relays</td>
<td>33</td>
</tr>
<tr>
<td>3.6</td>
<td>Out put of three relays</td>
<td>33</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Converting an analog signal to digital signal</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>PCM technique</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Unipolar line encoding</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Parallel running cables</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Clock oscillator</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>No return to a zero voltage level</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Digital signal encoding formats</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>HD 74 LS 373 chip</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>PIN Arrangement</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Block diagram</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Test circuit</td>
<td>26</td>
</tr>
<tr>
<td>3.5</td>
<td>ULN 2003 chip description</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>Logic diagram</td>
<td>28</td>
</tr>
<tr>
<td>3.7</td>
<td>Electrical characteristics</td>
<td>30</td>
</tr>
<tr>
<td>3.8</td>
<td>Electrical characteristics</td>
<td>30</td>
</tr>
<tr>
<td>3.9</td>
<td>Electrical characteristics</td>
<td>30</td>
</tr>
<tr>
<td>3.10</td>
<td>Electrical characteristics</td>
<td>30</td>
</tr>
<tr>
<td>3.11</td>
<td>Circuit of design</td>
<td>34</td>
</tr>
<tr>
<td>5.1</td>
<td>The practical circuit shown the result of encoding</td>
<td>49</td>
</tr>
</tbody>
</table>
Abbreviation

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>alternate mark innovation</td>
</tr>
<tr>
<td>Bi- phase- L</td>
<td>Bi- Phase Level</td>
</tr>
<tr>
<td>Bi- Phase – M</td>
<td>Bi – Phase mark</td>
</tr>
<tr>
<td>Bi – Phase – S</td>
<td>Bi– Phase Space</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complimentary metaloxide silicon</td>
</tr>
<tr>
<td>DBi- Phase – M</td>
<td>Differential Bi- phase mark level</td>
</tr>
<tr>
<td>DBi- Phase – S</td>
<td>Differential Bi – Phase Space</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>I/O</td>
<td>input/ output</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronic Engineers</td>
</tr>
<tr>
<td>ISI</td>
<td>inter symbol interference</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LPF</td>
<td>Low pass filter</td>
</tr>
<tr>
<td>NRZ</td>
<td>Non- Return – to – zero</td>
</tr>
<tr>
<td>NRZ- I</td>
<td>Non – Return – to – zero inverse</td>
</tr>
<tr>
<td>NRZ – L</td>
<td>Non – Return – to- zero level</td>
</tr>
<tr>
<td>NRZ- M</td>
<td>Non – Return – to – zero mark</td>
</tr>
<tr>
<td>NRZ- S</td>
<td>Non – Return – to – zero space</td>
</tr>
<tr>
<td>RTZ</td>
<td>Return – to – zero</td>
</tr>
<tr>
<td>PAM</td>
<td>Plus Amplitude modulation</td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
</tr>
<tr>
<td>PCM</td>
<td>plus code modulation</td>
</tr>
<tr>
<td>TCP</td>
<td>try to correct the data</td>
</tr>
<tr>
<td>TS</td>
<td>Time period of each sample</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor – transistor logic</td>
</tr>
</tbody>
</table>
Design of a Digital Encoding Circuit

A thesis submitted in a partial fulfillment of The requirements for the degree of MSc. In communication Engineering

Supervisor:
Dr. Abd ALrasol Jabar ALzubaidy

Presented by:
Kamal Fouad Abbas Mohammed

January 2009
Chapter One

Introduction
Chapter Two

Type of encoding
Chapter Three

Electronic circuit design
Chapter Four

Software code
Chapter Five

Result & Discussion
Chapter Six

Conclusion & Recommendation
Appendix