Dedication

To my colleagues, students and researchers.
Acknowledgement

First of all, giving thanks to Allah,
And a special thanks to supervisor
Dr. Yosif Hassan Mohammed Ali.

I can’t forget giving thanks to everyone who helped me and gave me a new hope for successful.

I am gratefully acknowledges the financial support of the lectures and all the staff of Sudan University’s, School of Mechanical Engineering for all what they offered throughout my educational path in the university.

I wish to acknowledge the efforts of the air conditioning work shop staff for their help during the experimental work.

At the last “thanks” for every one stood beside me until the last dot.
Abstract

High energy demand associated to the massive use of air conditioning systems requires careful consideration of passive cooling strategies, with evaporative cooling being recognized as a useful possibility for that purpose. One important factor that influences the performance of evaporative cooling systems is the media material that supports water evaporation process (cooling pad). As a result a lot of research is being carried out to determine the performance of the cooling pads experimentally.

The major purpose of the study was to evaluate the performances of using Luffa (local natural fibers Type) to be used as wetted pads in direct evaporative cooling.

The tests were carried out at two levels of air velocity (4 m/s and 8 m/s) and two levels of pad thickness (40 mm and 80 mm). According to the results of this study, it can be stated that the average maximum saturation efficiency is highest for Luffa at 95.1%, compared to 90% for the reference commercial pad. The results show that there are a negative relationship between the cooling efficiency and the air velocity and a positive one with the pad thickness change.
تجريـبـهـ

يقترض إرتفاع الطلب على الطاقة المرتبطة بالإستخدام المكثف لأنظمة التبريد و التكييف دراسة إستراتيجية متألبة، و بدأ أصبح نظام التبريد التبخيري حل مناسب لهذه المشكلة.

أحد العوامل الهامة التي تؤثر على أداء أنظمة التبريد التبخيري هو المادة العاملة التي تدعم عملية تبخر المياه (وسائد التبريد)، ونتيجة لذلك يجري العديد من الباحثين التجارب حول تقييم أداء هذه المواد عملياً.

الهدف الرئيسي من هذه الدراسة هو تقييم أداء استخدام الليف (نوع من الألياف الطبيعية المحلية) كوسائد تبريدية مبهرة في التبريد التبخيري المباشر.

أجريت الاختبارات على مستويين من سرعة الهواء (4 م/ث و 8 م/ث) ومستويين من سمك الوسادة (40 مم و80 مم). وفقا لنتائج هذه الدراسة، يمكن القول أن أقصى متوسط كفاءة تشبع في الليف 95.1%، مقابل 90% للوسادة التجارية.

وأظهرت النتائج أن هناك علاقة سلبية بين كفاءة التبريد وسرعة الهواء وإيجابية مع تغير سمك الوسائد.
Table of contents

Dedication I
Acknowledgement II
Abstract III
Abbreviations & Symbols VI
List of tables VIII
List of figures IX

1. Introduction 2
 1.1 Motivation 2
 1.2 Study scope 3
 1.3 Study layout 3
 1.4 Objective 4
 1.4.1 General Objective 4
 1.4.2 Specific Objectives 4

2. Theoretical Background and Literature Review 6
 2.1 Introduction 6
 2.2 Theoretical background 6
 2.2.1 Classification of evaporative cooling systems 7
 2.2.1.1 Direct evaporative cooling systems 7
 2.2.1.2 Indirect evaporative cooling systems 10
 2.2.1.3 Multi-stage evaporative cooling systems 11
 2.3 Advantages and disadvantages of evaporative Cooling systems 13
 2.4 Applicability of evaporative cooling systems 14
 2.5 Literature review 16

3. Materials and methods 19
 3.1 Materials 19
 3.1.1 Luffa 19
 3.1.2 Commercial materials 19
 3.2 Methods 19

4. Analysis and discussion 25
 4.1 The effect of air velocity on the evaporative Saturation efficiency of pads 27
 4.2 The effect of pad thickness on the evaporative Saturation efficiency 30

5. Conclusion 32
References 33
Abbreviations & Symbols

A/ Abbreviations:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>DBT</td>
<td>Dry Bulb Temperature</td>
</tr>
<tr>
<td>WBT</td>
<td>Wet Bulb Temperature</td>
</tr>
<tr>
<td>v</td>
<td>Air velocity</td>
</tr>
<tr>
<td>m/s</td>
<td>Meter per Second</td>
</tr>
</tbody>
</table>
List of symbols:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Function</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>Temperature</td>
<td>°C</td>
</tr>
<tr>
<td>v</td>
<td>velocity</td>
<td>m/s</td>
</tr>
<tr>
<td>ΔT</td>
<td>Temperature decrease</td>
<td>°C</td>
</tr>
<tr>
<td>η</td>
<td>Saturation cooling efficiency</td>
<td>%</td>
</tr>
<tr>
<td>t₀</td>
<td>Dry bulb temperature of the outdoor air</td>
<td>°C</td>
</tr>
<tr>
<td>tₛ</td>
<td>Dry bulb temperature of the supply air</td>
<td>°C</td>
</tr>
<tr>
<td>t₀,wbt</td>
<td>Wet bulb temperature of the entering air</td>
<td>°C</td>
</tr>
</tbody>
</table>
List of Tables

Table (3-1): Physical properties of selected fibers ... 19
Table (3-2): Temperature drops of the commercial pads .. 21
 Evaporative cooler at 40 mm pad thickness .. 21
Table (3-3): Temperature drops of the commercial pads .. 22
 Evaporative cooler at 80 mm pad thickness .. 22
Table (3-4): Temperature drops of the Luffa pads ... 22
 Evaporative cooler at 40 mm pad thickness .. 22
Table (3-5): Temperature drops of the Luffa pads ... 23
 Evaporative cooler at 80 mm pad thickness .. 23
List of Figures

Fig (2-1-a): Direct evaporative cooling system 8
Fig (2-1-b): Direct evaporative cooling process 9
Fig (2-2-a): An indirect evaporative cooling system 10
Fig (2-2-b): An indirect evaporative cooling process 11
Fig (2-3-a): A two-stage evaporative cooling system 12
Fig (2-3-b): A two-stage evaporative cooling process 12
Fig (2-4): Schematic diagram of the components of a typical direct evaporative cooler 15
Fig (3-1): Schematic of experimental evaporative cooler model 20
Fig (4-1): Temperature drops of the commercial pads evaporative cooler at 40 mm pad thickness 25
Fig (4-2): Temperature drops of the commercial pads evaporative cooler at 80 mm pad thickness 26
Fig (4-3): Temperature drops of the Luffa pads evaporative cooler at 40 mm pad thickness 26
Fig (4-4): Temperature drops of the Luffa pads evaporative cooler at 80 mm pad thickness 27
Fig (4-5): The effect of the air velocity on the saturation efficiency of the commercial pads evaporative cooler at 40 mm pad thickness 28
Fig (4-6): The effect of the air velocity on the saturation efficiency of the commercial pads evaporative cooler at 80 mm pad thickness 28
Fig (4-7): The effect of the air velocity on the saturation efficiency of the Luffa pads evaporative cooler at 40 mm pad thickness 29