TO

The soul of my dearest father

TO

My lovely mother, brothers, and sister

Asha
ACKNOWLEDGEMENTS

Praise, is in the first place be to Almighty Allah, who gave me health and aptitude to complete this work.

I am deeply indebted to my supervisor Dr. Mohamed Omer Salim, for his guidance, advice, encouragement and considerable help through out the execution and writing of this study.

I wish to express my sincere thanks and gratitude to my co – supervisor Dr. Amel Omer Bakhiet for her helpful suggestions, and continuous support through out this work.

The laboratory work of this study was done in the Regional Veterinary Research Laboratory (R. V. R. L.), at El-Obeid. My work was made possible by the generous facilities provided in the laboratory.

I am indebted to Dr. Idris Ahamed Yagoub, Director of the Regional Veterinary Research Laboratory, and successful technical help of Dr. Abdel -Rahman Adam.

My thanks are due to the senior technician Mr. Bakheit El tigani Mohammed for his help.

I am grateful to the staff of El-Obeid Regional Laboratory.

Finally, I appreciate the support of the Regional Ministry of Agricultural and Animal Resource; I am indebted to Dr. Hammed Adam Mohammed and Dr. Babekir Ahamed Adam for their help and kindness.

My thanks are also due to my colleagues Sit Elnafar Abbakar and Mobark Hassan Belal for their help. Many thanks are extended to all people who
contributed in advice or support, and help me in one way or another to finish this work successfully.

List of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>List of Contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>x</td>
</tr>
<tr>
<td>List Figures</td>
<td>xi</td>
</tr>
<tr>
<td>Abstract</td>
<td>xii</td>
</tr>
<tr>
<td>Arabic abstract</td>
<td>xiii</td>
</tr>
</tbody>
</table>

INTRODUCTION

CHAPTER ONE: LITERATURE REVIEW

1.1 Overview
1.2 Definition of wound
1.3 Classification of wounds
1.3.1 Closed wounds
1.3.2 Open wounds
1.3.2.1 Abrasions
1.3.2.2 Punctured wounds or stabs
1.3.2.3 Lacerated wounds
1.3.2.4 Contused wounds
1.3.2.5 Avulsions 6
1.3.2.6 Penetrating and perforating wounds 7
1.3.2.7 Bed sore 7
1.3.2.8 Abscess 7
1.4 Wounds healing 8
1.4.1. Factors influencing wound healing 11
1.4.1.1 First Factors 11
1.4.1.2 Second factor 12
1.4.1.3 Third factors 13
1.4.1.4 Other factors 13
1.4.1.5 Nutritional deficiency 13
1.4.1.6 Local factors 14
1.5 Wound infections 16
1.5.1 Purulent infections 17
1.5.1.1 Staphylococcus aureus 19
1.5.1.2 The Streptococi 22
1.5.1.3 Sensitivity to antibacterial agents 24
1.5.1.4 Streptococcus pyogenes 24
1.5.1.5 Enterococci 24
1.5.1.6 Corynebacterium species 25
1.5.1.7 Kurthia species 26
1.5.1.8 Pasteurella species 26
1.5.1.9 Neisseria species 27
1.5.2 Wound infection with unusual pathogens 27
1.5.2.1 Vibrio species 27
1.5.2.2 Aeromonas species

1.6 Treatment of infected wound

1.7 Treatment of accidental traumatic wounds

1.8 Emergency treatment

CHAPTER TWO: MATERIALS AND METHODS

2.1 Area of study

2.2 Animals targeted

2.3 Collection of samples

2.4 Transportation and storage of samples

2.5 Laboratory methods

2.6 Culture media

2.6.1 Solid media

2.6.1.1 Blood Agar media: Blood agar base No. 2 (Oxoid) (CM\textsubscript{271})

2.6.1.2 Nutrient agar (Oxoid CM\textsubscript{1})

2.6.1.3 MacConkey’s agar (Oxoid CM\textsubscript{7})

2.6.1.4 Urea Agar base (Oxoid M\textsubscript{53})

2.6.2 Semi solid media

2.6.2.1 S.I.M. medium (OxoidCM\textsubscript{435})

2.6.2.2 Oxidation–Fermentation (OF) medium: (Hugh and Leifson’s)

2.6.3 Liquid media

2.6.3.1 Nutrient Broth (Oxoid)

2.6.3.2 Peptone water medium

2.6.3.3 Carbohydrate fermentation medium
2.6.3.3.1 Peptone water sugars 43
2.6.3.3.2 Phenol Red peptone water (Oxoid CM63) 43
2.6.3.4 MR test medium (Glucose – phosphate medium) 44
2.6.3.5 Glucose-phosphate medium: Voges–Proskauer (VP) medium 45
2.6.3.6 Arginine broth 45
2.6.3.7 Koser citrate medium 46
2.6.3.8 KCN broth medium 46
2.6.3.9 Nitrate broth medium 47
2.7 Reagents 48
2.7.1 Hydrogen peroxide (H$_2$O$_2$) 48
2.7.2 Tetramethyl – P – Phenylene – Diamine – Dihydrochloride 48
2.7.3 Potassium hydroxide 48
2.7.4 Methyl red solution 48
2.7.5 Nitrate reagents 49
2.8 Indicators 49
2.8.1 Phenol Red 49
2.8.2 Promothymol blue 49
2.8.3 Andrade’s indicators 49
2.9 Asepsis and sterilization 50
2.9.1 Hot – air oven (160°C for one hour) 50
2.9.2 Autoclaving at 121°C (15) square inch 50
2.10 Collection of blood 50
2.11 Plasma 50
2.12 Culture methods 50
2.12.1 Primary isolation
2.12.2 Sub culturing of primary isolates
 2.12.2.1 from liquid to solid media
 2.12.2.2 From solid to solid media
 2.12.2.3 From solid to liquid media
 2.12.2.4 From liquid to liquid media
2.12.3 Examination of cultures
2.12.4 Purification of cultures
2.13 Identification of the isolated bacteria
 2.13.1 Gram’s stain
 2.13.2 Motility test
2.14. Physiological methods
2.15 Biochemical methods for identification of bacteria
 2.15.1 Catalase test
 2.15.2 Oxidase test
 2.15.3 Indole test
 2.15.4 Hydrogen sulphide (H$_2$S) production
 2.15.5 Oxidation fermentation test
 2.15.6 Fermentation of sugars
 2.15.7 Citrate utilization
 2.15.8 Urease activity
 2.15.9 Methyl Red test
 2.15.10. Nitrate reduction test
 2.15.11 Voges – proskauer (VP) test
2.15.12 Coagulase test 57
2.15.12.1 Slide coagulase test 57
2.15.12.2 Tube coagulase test 57
2.15.13 KCN test 58
2.15.14 Arginine hydrolysis 58
2.16 Antibiotics sensitivity test 58

CHAPTER THREE: RESULTS 60

3.1 Microscopical, biochemical reactions and cultural characteristics of the isolates 60
3.1.1 Staphylococcus spp. 60
3.1.2 Streptococcus spp. 61
3.1.3 Enterococcus faecalis, Enterococcus faecium and group D Streptococci 61
3.1.4 Corynebacterium spp., Listeia spp. and Kurthia species 62
3.1.5 Identification of bacillus species 62
3.2 Prevalence and distribution of the bacteria isolates 68
3.2.1 Isolations in relation to samples and seasons 68
3.2.2 Bacterial species isolated in relation to samples tested 68
3.2.3 Frequency of bacterial species isolated in different seasons 72
3.2.4 Isolated bacteria according to locality 73
3.2.5 Isolated bacteria according to the types of animals 77
3.2.6 Isolated bacteria in relation to animal purposes 77
3.2.7 Isolated organisms compared to the type of wounds 78
3.3 Antibiotics activity against the major isolated bacteria

3.3.1 *Staphylococcus aureus* 87

3.3.2 *Staphylococcus epidermidis* 87

3.3.3 *Enterococcus faecalis* 87

3.3.4 *Enterococcus faecium* 87

3.3.5 *Bacillus licheniformis* 88

3.3.6 *Bacillus firmus* 88

CHAPTER FOUR: DISCUSSION 91

Conclusions 95

Recommendations 96

REFERENCES 97
List of Tables

Table (1): Locations and number of animal species tested in different seasons 33

Table (2): Animal species, purpose of the animal and samples tested 34

Table (3): Types of wounds sampled in different seasons 35

Table (4) Differences in biochemical findings among Staphylococcus and other related cocci 63

Table (5) Identification of Streptococcus pyogenes and Streptococcus salivarius 64

Table (6) Identification of Enterococci and group DStreptococci 65

Table (7) Identification of Corynebacterium, Listeria and Kurthia 66

Table (8) Identification of Bacillus species 67

Table (9): The seasonality of sampling, number and types of bacterial species isolated 70

Table (10): Bacterial species isolated(No. and %) in relation to samples tested 71

Table (11): Frequency of bacterial species isolated in different seasons 74

Table (12): The number of isolated bacteria according to localities 75

Table (13): The number of isolated organisms according to type of animals 80

Table (14): The number of isolated organism in relation to animals purposes 81

Table (15): The results of isolated organism compared to the types of wounds 82
Table (16): The antibiotics activity against the major isolated bacteria
List of Figures

Figure (1): Types of wounds sampled in different seasons 36
Figure (2): Saddle wound 83
Figure (3): Open abscess (at hip joint) 84
Figure (4): Cauterization wound 85
Figure (5): Abrasion wound 86
Figure (6): The antibiotics activity against the major isolated bacteria 90
Abstract

This study was conducted at El-Obeid Town and some rural areas around EL-Obeid. 116 samples were collected as swabs, exudates and tissues scraping from different types of wounds.

Equine (donkeys and horses) were the targeted animals. These animals are used for different purposes.

For the isolation and identification of bacterial contaminants the conventional methods described by Barrow and Feltham (1993) were used.

Most of the bacterial isolates were recovered from swab samples (118 isolates), *Enterococcus faecalis* – 27 (22.9%), *Staphylococcus aureus* – 24 (20.3%) and *Enterococcus faecium* - 14 (11.9%) were the most dominant isolates.

The majority of isolates, 63 isolates out of 159 were obtained in summer; these isolates were highly recovered from riding donkey's saddle wounds at El-Obeid Town.

Staphylococcus aureus, Staphylococcus epidermidis

Enterococcus faecium, Enterococcus faecalis, Bacillus licheniformis and *Bacillus firmus* were selectively used for the susceptibility against different antibiotics, Nitrofuran, Kanamycin, Nalidixic acid and
Gentamicin were found active against the tested organisms (6-10 mm) inhibitory zone.

ملخص الأطروحة

تمت هذه الدراسة بمدينة الأبيض وبعض المناطق الريفية حولها، بلقت جملة العينات Tissue (116 عينة عبرة عن مسحات (Swabs) وخرجات (Exudate) وأنسجة (scraping) اخذت من أنواع الجروح المختلفة. الحيوانات المستهدفة هي الفصيلة الخيلية (حمير وخيول) ذات استخدامات متعددة الأغراض.

لعزل وتصنيف البكتريات الملوثة اتبعت طريقة (بارو وفلام 1993). عزلت معظم البكتريات من عينات المسحات (swabs) هي 118 معزولة منها، Enterococcus faecalis 27(22.9%), Staphylococcus aureus 24(20.3%), Enterococcus faecium 14(11.9%).

عزلت 63 معزولة من اصل 159 معزولة في فترة الصيف من جروح السرج لحمير الركوبة في مدينة الأبيض.

المتكورة العنقودية الذهبية (Staphylococcus aureus) والمتلألئة العنقودية Staphylococcus epidermidis, Enterococcus faecalis, البشروية اختبرت لإجراء اختبارات Enterococcus faecium, Bacillus licheniformis, الحساسية ضد المضادات الحيوية والبكتيرية التالية: نيتروفيوران، كناميسين، حامض
النالديكسك، والجنتاميسين لوحظ ان كبح نمو الميكروبات المذكورة اعلاه في منطقة الاختبار يتمارح في مساحة 6 – 10 م²