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3. Control System 

 

     The main control item of the tracker system is the microcontroller 

Atmega16L loaded with PID controller algorithm.  

 

3.1 Microcontroller :( atmega16L): 

The ATmega16 is a low-power CMOS 8-bit microcontroller based on the 

AVR enhanced RISC architecture. By executing powerful instructions in a 

single clock cycle, the ATmega16 achieves throughputs approaching 1 

MIPS per MHz allowing the system designer to optimize power 

consumption versus processing speed. The AVR core combines a rich 

instruction set with 32 general purpose working registers. All the 32 

registers are directly connected to the Arithmetic Logic Unit (ALU), 

allowing two independent registers to be accessed in one single instruction 

executed in one clock cycle. The resulting architecture is more code efficient 

while achieving throughputs up to ten times faster than conventional CISC 

microcontrollers. The ATmega16 AVR is supported with a full suite of 

program and system development tools including: C compilers, macro 

assemblers, program debugger/simulators, in-circuit emulators, and 

evaluation kits. The boot program can use any interface to download the 

application program in the Application Flash memory. Software in the Boot 

Flash section will continue to run while the Application Flash section is 

updated, providing true Read-While-Write operation. By combining an 8-bit 

RISC CPU with In-System Self-Programmable Flash on a monolithic chip, 

the Atmel ATmega16 is a powerful microcontroller that provide highly-

flexible and cost-effective solution to many embedded control applications. 
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3.1.1 MCU Block Daigram: 

 

 

Figure (3.1) atmega16 block diagram 



29 
 

 

3.1.2 Pin Descriptions: 

   VCC Digital supply voltage. 

  GND Ground. 

  Port A (PA7..PA0) Port A serves as the analog inputs to the A/D 

Converter. 

Port A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is 

not used. Port pins can provide internal pull-up resistors (selected for each 

bit). The Port A output buffers have symmetrical drive characteristics with 

both high sink and source capability. When pins PA0 to PA7 are used as 

inputs and are externally pulled low, they will source current if the internal 

pull-up resistors are activated. The Port A pins are tri-stated when a reset 

condition becomes active, even if the clock is not running. 

  Port B (PB7..PB0) Port B is an 8-bit bi-directional I/O port with internal 

pull-up resistors (selected for each bit). The Port B output buffers have 

symmetrical drive characteristics with both high sink and source capability. 

As inputs, Port B pins that are externally pulled low will source current if the 

pull-up resistors are activated. The Port B pins are tri-stated when a reset 

condition becomes active, 

even if the clock is not running. 

   Port C (PC7..PC0) Port C is an 8-bit bi-directional I/O port with internal 

pull-up resistors (selected for each bit). The Port C output buffers have 

symmetrical drive characteristics with both high sink and source capability. 

As inputs, Port C pins that are externally pulled low will source current if the 

pull-up resistors are activated. The Port C pins are tri-stated when a reset 

condition becomes active, 
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even if the clock is not running. If the JTAG interface is enabled, the pull-up 

resistors on pins PC5(TDI), PC3(TMS) and PC2(TCK) will be activated 

even if a reset occurs. 

   Port D (PD7..PD0) Port D is an 8-bit bi-directional I/O port with internal 

pull-up resistors (selected for each bit). The Port D output buffers have 

symmetrical drive characteristics with both high sink and source capability. 

As inputs, Port D pins that are externally pulled low will source current if 

the pull-up resistors are activated. The Port D pins are tri-stated when a reset 

condition becomes active, 

even if the clock is not running. 

  RESET Input. A low level on this pin for longer than the minimum pulse 

length will generate a reset, even if the clock is not running.Shorter pulses 

are not guaranteed to generate a reset. 

  XTAL1 Input to the inverting Oscillator amplifier and input to the internal 

clock operating circuit. 

  XTAL2 Output from the inverting Oscillator amplifier. 

  AVCC is the supply voltage pin for Port A and the A/D Converter. It 

should be externally connected to VCC, even if the ADC is not used. If the 

ADC is used, it should be connected to VCC through a low-pass filter. 

  AREF is the analog reference pin for the A/D Converter. Figure (4.2). 

 

 

 

 

 

 

 



31 
 

3.1.3 Data Registers I\O: 
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Figure (3.2) Shows PIN out of ATmega16L 
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3.2 PID controller algorithm: 

PID controllers date to 1890s governor design. PID controllers were 

subsequently developed in automatic ship steering. One of the earliest 

examples of a PID-type controller was developed by Elmer Sperry in 1911, 

while the first published theoretical analysis of a PID controller was by 

Russian American engineer Nicolas Minorsky, in (Minorsky 1922). 

Minorsky was designing automatic steering systems for the US Navy, and 

based his analysis on observations of a helmsman, observing that the 

helmsman controlled the ship not only based on the current error, but also on 

past error and current rate of change; this was then made mathematical by 

Minorsky. His goal was stability, not general control, which significantly 

simplified the problem. While proportional control provides stability against 

small disturbances, it was insufficient for dealing with a steady disturbance, 

notably a stiff gale (due to droop), which required adding the integral term. 

Finally, the derivative term was added to improve control. 
[8]

 

Trials were carried out on the USS New Mexico, with the controller 

controlling the angular velocity (not angle) of the rudder. PI control yielded 

sustained yaw (angular error) of ±2°, while adding D yielded yaw of ±1/6°, 

better than most helmsmen could achieve. 
[8]

 

The Navy ultimately did not adopt the system, due to resistance by 

personnel. Similar work was carried out and published by several others in 

the 1930s.
 [8]

 

In the early history of automatic process control the PID controller was 

implemented as a mechanical device. These mechanical controllers used a 

http://en.wikipedia.org/wiki/Governor_(device)
http://en.wikipedia.org/wiki/Elmer_Sperry
http://en.wikipedia.org/wiki/Russian_American
http://en.wikipedia.org/wiki/Nicolas_Minorsky
http://en.wikipedia.org/wiki/PID_controller#CITEREFMinorsky1922
http://en.wikipedia.org/wiki/Helmsman
http://en.wikipedia.org/wiki/PID_controller#Droop
http://en.wikipedia.org/wiki/USS_New_Mexico_(BB-40)
http://en.wikipedia.org/wiki/Angular_velocity
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lever, spring and a mass and were often energized by compressed air. These 

pneumatic controllers were once the industry standard.
 [8]

 

Electronic analog controllers can be made from a solid-state or tube 

amplifier, a capacitor and a resistor. Electronic analog PID control loops 

were often found within more complex electronic systems, for example, the 

head positioning of a disk drive, the power conditioning of a power supply, 

or even the movement-detection circuit of a modern seismometer. 

Nowadays, electronic controllers have largely been replaced by digital 

controllers implemented with microcontrollers or FPGAs.
 [8]

 

Most modern PID controllers in industry are implemented in programmable 

logic controllers (PLCs) or as a panel-mounted digital controller. Software 

implementations have the advantages that they are relatively cheap and are 

flexible with respect to the implementation of the PID algorithm. PID 

temperature controllers are applied in industrial ovens, plastics injection 

machinery, hot stamping machines and packing industry.
 [8]

 

Variable voltages may be applied by the time proportioning form of pulse-

width modulation (PWM)—a cycle time is fixed, and variation is achieved 

by varying the proportion of the time during this cycle that the controller 

outputs +1 (or −1) instead of 0. On a digital system the possible proportions 

are discrete—e.g., increments of 0.1 second within a 2 second cycle time 

yields 20 possible steps: percentage increments of 5%; so there is a 

discretization error, but for high enough time resolution this yields 

satisfactory performance. 
[8]

 

http://en.wikipedia.org/wiki/Lever
http://en.wikipedia.org/wiki/Spring_(device)
http://en.wikipedia.org/wiki/Mass
http://en.wikipedia.org/wiki/Pneumatic
http://en.wikipedia.org/wiki/Analog_circuit
http://en.wikipedia.org/wiki/Transistor
http://en.wikipedia.org/wiki/Valve_amplifier
http://en.wikipedia.org/wiki/Valve_amplifier
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Resistor
http://en.wikipedia.org/wiki/Disk_drive
http://en.wikipedia.org/wiki/Power_supply
http://en.wikipedia.org/wiki/Seismometer
http://en.wikipedia.org/wiki/Microcontrollers
http://en.wikipedia.org/wiki/FPGA
http://en.wikipedia.org/wiki/Programmable_logic_controller
http://en.wikipedia.org/wiki/Programmable_logic_controller
http://en.wikipedia.org/wiki/Time_proportioning
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/wiki/Pulse-width_modulation
http://en.wikipedia.org/w/index.php?title=Cycle_time&action=edit&redlink=1
http://en.wikipedia.org/wiki/Discretization_error
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This algorithm is being used to reduce the time required to minimize the 

error to be as close as the reference value and also for accurate calculation of 

the number of steps required to the correct position of the solar panel. 

The PID control scheme, figure (4.3), is named after its three correcting 

terms, whose sum constitutes the manipulated variable (MV). The 

proportional, integral, and derivative terms are summed to calculate the 

output of the PID controller. Defining as the controller output, the final 

form of the PID algorithm is: 

 

where 

: Proportional gain, a tuning parameter  

: Integral gain, a tuning parameter  

: Derivative gain, a tuning parameter  

e(t) Error = r(t)setpoint – y(t)measured value 

: Time or instantaneous time (the present)  

: Variable of integration; takes on values from time 0 to the present 

.  
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Figure (3.3) System representation of PID equation 

 

3.2.1 Proportional term: 

The proportional term produces an output value that is proportional to the 

current error value. The proportional response can be adjusted by 

multiplying the error by a constant Kp, called the proportional gain constant. 

The proportional term is given by: 

 

A high proportional gain results in a large change in the output for a given 

change in the error, figure (4.4). If the proportional gain is too high, the 

system can become unstable. In contrast, a small gain results in a small 

http://en.wikipedia.org/wiki/File:PID_en_updated_feedback.svg
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output response to a large input error, and a less responsive or less sensitive 

controller. If the proportional gain is too low, the control action may be too 

small when responding to system disturbances. Tuning theory and industrial 

practice indicate that the proportional term should contribute the bulk of the 

output change. 
[9]

 

 

Figure (3.4) Plot of y(t) vs time, for three values of Kp (Ki and Kd held constant) 

 

3.2.2 Integral term: 

The contribution from the integral term is proportional to both the magnitude 

of the error and the duration of the error. The integral in a PID controller is 

the sum of the instantaneous error over time and gives the accumulated 

offset that should have been corrected previously, figure (4.5). The 

http://en.wikipedia.org/wiki/Integral
http://en.wikipedia.org/wiki/File:Change_with_Kp.png
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accumulated error is then multiplied by the integral gain ( ) and added to 

the controller output. 

The integral term is given by: 

 

The integral term accelerates the movement of the process towards setpoint 

and eliminates the residual steady-state error that occurs with a pure 

proportional controller. However, since the integral term responds to 

accumulated errors from the past, it can cause the present value to overshoot 

the setpoint value.
 [9]

 

 

 

 

Figure (3.5) Plot of y(t)  vs time, for three values of Ki (Kp and Kd held constant) 

http://en.wikipedia.org/wiki/Overshoot_(signal)
http://en.wikipedia.org/wiki/File:Change_with_Ki.png
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3.2.3 Derivative term: 

The derivative of the process error is calculated by determining the slope of 

the error over time and multiplying this rate of change by the derivative gain 

Kd. The magnitude of the contribution of the derivative term to the overall 

control action is termed the derivative gain, Kd. 

The derivative term is given by: 

 

Derivative action predicts system behavior and thus improves settling time 

and stability of the system. Derivative action, however, is seldom used in 

practice because of its inherent sensitivity to measurement noise, figure 

(4.6). If this noise is severe enough, the derivative action will be erratic and 

actually degrade control performance. Large, sudden changes in the 

measured error (which typically occur when the set point is changed) cause a 

sudden, large control action stemming from the derivative term, which goes 

under the name of derivative kick. This problem can be ameliorated to a 

degree if the measured error is passed through a linear low-pass filter or a 

nonlinear but simple median filter.  
[9]

 

 

http://en.wikipedia.org/wiki/Derivative
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Median_filter
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Figure (3.6) Plot of PV vs time, for three values of Kd (Kp and Ki held constant) 

3.2.4 Loop tuning: 

Tuning a control loop is the adjustment of its control parameters 

(proportional band/gain, integral gain/reset, derivative gain/rate) to the 

optimum values for the desired control response. Stability (bounded 

oscillation) is a basic requirement, but beyond that, different systems have 

different behavior, different applications have different requirements, and 

requirements may conflict with one another. 
[9]

 

PID tuning is a difficult problem, even though there are only three 

parameters and in principle is simple to describe, because it must satisfy 

complex criteria within the limitations of PID control. There are accordingly 

various methods for loop tuning. 
[9]

 

http://en.wikipedia.org/wiki/PID_controller#Limitations_of_PID_control
http://en.wikipedia.org/wiki/File:Change_with_Kd.png
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Designing and tuning a PID controller appears to be conceptually intuitive, 

but can be hard in practice, if multiple (and often conflicting) objectives 

such as short transient and high stability are to be achieved. Usually, initial 

designs need to be adjusted repeatedly through computer simulations until 

the closed-loop system performs or compromises as desired. 
[9]

 

Some processes have a degree of nonlinearity and so parameters that work 

well at full-load conditions don't work when the process is starting up from 

no-load; this can be corrected by gain scheduling (using different parameters 

in different operating regions). PID controllers often provide acceptable 

control using default tunings, but performance can generally be improved by 

careful tuning, and performance may be unacceptable with poor tuning. 
[9]

 

 

3.2.5 Stability: 

If the PID controller parameters (the gains of the proportional, integral and 

derivative terms) are chosen incorrectly, the controlled process input can be 

unstable, i.e., its output diverges, with or without oscillation, and is limited 

only by saturation or mechanical breakage. Instability is caused by excess 

gain, particularly in the presence of significant lag. 
[9] 

 

  Generally, stabilization of response is required and the process must not 

oscillate for any combination of process conditions and setpoints, though 

sometimes marginal stability (bounded oscillation) is acceptable or desired. 

[9]
 

 

http://en.wikipedia.org/wiki/Nonlinear_system
http://en.wikipedia.org/wiki/Gain_scheduling
http://en.wikipedia.org/wiki/Divergence_(computer_science)
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Lag
http://en.wikipedia.org/wiki/Marginal_stability
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3.2.6 Optimum behavior: 

The optimum behavior on a process change or setpoint change varies 

depending on the application. 

Two basic requirements are regulation (disturbance rejection – staying at a 

given setpoint) and command tracking (implementing setpoint changes) – 

these refer to how well the controlled variable tracks the desired value. 

Specific criteria for command tracking include rise time and settling time. 

Some processes must not allow an overshoot of the process variable beyond 

the setpoint if, for example, this would be unsafe. Other processes must 

minimize the energy expended in reaching a new set point. 
[9]

 

3.2.7 Overview of tuning methods: 

There are several methods for tuning a PID loop. The most effective 

methods generally involve the development of some form of process model, 

then choosing P, I, and D based on the dynamic model parameters. Manual 

tuning methods can be relatively inefficient, particularly if the loops have 

response times on the order of minutes or longer. 
[9]

 

The choice of method will depend largely on whether or not the loop can be 

taken "offline" for tuning, and on the response time of the system. If the 

system can be taken offline, the best tuning method often involves 

subjecting the system to a step change in input, measuring the output as a 

function of time, and using this response to determine the control 

parameters. 
[9]

 

 

http://en.wikipedia.org/wiki/Rise_time
http://en.wikipedia.org/wiki/Settling_time
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Method such as : 

I. Manual tuning: 

If the system must remain online, one tuning method is to first set and 

values to zero. Increase the until the output of the loop oscillates, 

then the should be set to approximately half of that value for a "quarter 

amplitude decay" type response. Then increase until any offset is 

corrected in sufficient time for the process. However, too much will 

cause instability. Finally, increase , if required, until the loop is 

acceptably quick to reach its reference after a load disturbance. However, 

too much will cause excessive response and overshoot. A fast PID loop 

tuning usually overshoots slightly to reach the setpoint more quickly; 

however, some systems cannot accept overshoot, in which case an over-

damped closed-loop system is required, which will require a setting 

significantly less than half that of the setting that was causing oscillation. 

[9]
 

Effects of increasing a parameter independently 

Parameter Rise time Overshoot Settling time 
Steady-state 

error 
Stability

[9]
 

 

Decrease Increase Small change Decrease Degrade 

 

Decrease Increase Increase Eliminate Degrade 

 

Minor 

change 
Decrease Decrease 

No effect in 

 theory 

Improve if 

small 

II. Ziegler–Nichols method: 

http://en.wikipedia.org/wiki/Overdamping
http://en.wikipedia.org/wiki/Overdamping
http://en.wikipedia.org/wiki/PID_controller#cite_note-IEEE_PID_05-10
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    Another heuristic tuning method is formally known as the Ziegler–

Nichols method, introduced by John G. Ziegler and Nathaniel B. Nichols in 

the 1940s. As in the method above, the and gains are first set to zero. 

The proportional gain is increased until it reaches the ultimate gain, , at 

which the output of the loop starts to oscillate. and the oscillation period 

are used to set the gains as shown: 
[9]

 

Ziegler–Nichols method 

Control Type 
 

  

P 
 

- - 

PI 
 

 

- 

PID 
 

  

These gains apply to the ideal, parallel form of the PID controller. When 

applied to the standard PID form, the integral and derivative time parameters 

and are only dependent on the oscillation period . Please see the 

section "Alternative nomenclature and PID forms". 
[9]

 

3.2.8 Limitations of PID control: 

While PID controllers are applicable to many control problems, and often 

perform satisfactorily without any improvements or even tuning, they can 

perform poorly in some applications, and do not in general provide optimal 

control. The fundamental difficulty with PID control is that it is a feedback 

system, with constant parameters, and no direct knowledge of the process, 

and thus overall performance is reactive and a compromise – while PID 

control is the best controller with no model of the process, better 

performance can be obtained by incorporating a model of the process. 
[9]

 

http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
http://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
http://en.wikipedia.org/w/index.php?title=John_G._Ziegler&action=edit&redlink=1
http://en.wikipedia.org/wiki/Nathaniel_B._Nichols
http://en.wikipedia.org/wiki/PID_controller#Alternative_nomenclature_and_PID_forms
http://en.wikipedia.org/wiki/Optimal_control
http://en.wikipedia.org/wiki/Optimal_control
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The most significant improvement is to incorporate feed-forward control 

with knowledge about the system, and using the PID only to control error. 

Alternatively, PIDs can be modified in more minor ways, such as by 

changing the parameters (either gain scheduling in different use cases or 

adaptively modifying them based on performance), improving measurement 

(higher sampling rate, precision, and accuracy, and low-pass filtering if 

necessary), or cascading multiple PID controllers. 
[9]
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