DEDICATION

I dedicate this research to my Father, my Mother and my Brothers
I would like to express my gratitude and appreciation to my supervisor, Dr. Abdulaziz Yousif Mohamed Abbas for his continues guidance and help in this work. Also thanks and appreciation are extended to Eng / Abdulrahman Abdullah Ahmed the Manager of Department of Analyzing and Planning in NEC Sudan and Eng / Alsayed Alamin Alsedeeq, Eng /Mustafa Mohammed Abdullah from Distribution Department in NEC Sudan to help me to estimate the data requested in this research.
ABSTRACT

Reliability is a key aspect of power system design and planning and has been an area of active research for some time now. Reliability studies are performed to maximize the reliability, efficiency, and safety of an electric power system, depending on your particular needs, protective device coordination, short circuit, and load flow studies may be performed and incorporated with the reliability study. In many cases, a reliability study will include a site visit by a field engineer to assess some factors such as: location and placement of surge arresters, transformer sizing and loading data, equipment failure and reliability data, outage restoration and sectionalizing procedures, outage reporting databases. And following the site visit a comprehensive report is submitted discussing the findings and suggesting ways to improve overall reliability of the system. The economics of preventive maintenance and continued operation of older equipment are considered, including downtime, repair costs, and production losses, recommendations may include replacement of marginal equipment and/or equipment approaching the end of its service life.

This research presented the basic concepts of power system reliability of the assessment techniques and reliability indices objective. Also formula of calculation and factors affecting of indices are presented and study focused in distribution system. State space approach (Markov method) that can be used to analyze and assessment the reliability of distribution systems is presented and applied to study some cases for the purpose of comparison between the local network (NEC Sudan) and IEEE.
الملخص

الاعتمادية هي أحد الجوانب الرئيسية لتخطيط وتصميم نظام القوى الكهربائية، وقد صارت من أكثر مجالات البحث النشط الآن. تجرى دراسات الاعتمادية لتحقيق أقصى قدر من الاعتمادية، الكفاءة، وسلامة نظم الطاقة الكهربائية، تبعاً للاحتياجات الخاصة به من تنبيه أجهزة الحماية، دوائر القصر، ويمكن إجراء دراسات تدفق الحمل وتدمج مع دراسة الاعتمادية. في كثير من الحالات، دراسة الاعتمادية تشمل تقييم المهندس الميداني للمواقع تقييم بعض العوامل مثل: موافقة موانع معارض الصواعق، حجم المحولات، وبيانات تحميلها، المعدات المتاحة، بيانات اعتمادتها، استعداد الأقسام اجراء تقييم الشبكة، تقارير بيانات انقطاع الطاقة. بعد تقرير شامل يقدم فيه نتائج بحثه واقتراح تحسين الاعتمادية لكل النظام، ويأخذ في الاعتبار اقتصادات الصيانة الوقائية واستمرار تشغيل المعدات القديمة، بما في ذلك التوقف، وتكاليف الصيانة، وفوائد الإنتاج، ويمكن أن تشمل توصيات بتعديلات معدات الطاقة أو معدات تقترب من نهاية عمرها الافتراضي.

قدم هذا البحث المفاهيم الأساسية لاعتمادية نظام القوى الكهربائية من مؤشرات الاعتمادية، تعريفاتها وأهداف تقييمها، النقطات المستخدمة في التقييم، المعادلات الرياضية المستخدمة لحسابها وعوامل المؤثر عليها. وتركز دراستنا في نظام التوزيع، وقدمت طريقة حذف الحالة التي يمكن استخدامها لتحليل الاعتمادية. نظم التوزيع، وطبقت هذه الطريقة لدراسة حالتين لغرض المقارنة بين الشبكة المحلية و IEEE.
TABLES OF CONTENTS

Dedication i
Acknowledgments ii
Abstract iii
المستهل iv
Tables of Contents v
List of Figures vii
List of Tables viii

Chapter One Background Study and Literature Review

1.1 Introduction 1
1.2 Reliability 2
1.3 Reliability of Electric Power System 4
1.4 Reliability Assessment Techniques 6
1.5 Reliability Indices 6
1.6 Literature Review 6
1.7 Outline of Thesis 10

Chapter Two Reliability Indices

2.1 General Concept 12
2.1.1 The Objectives of Calculating and Assessing the Reliability Indices 12
2.2 The Classification of Reliability Indices 13
2.2.1 Reliability Indices of the Position Loads 13
2.2.2 Reliability Indices of the System 14
2.3 Variables Affecting Reliability Indices 25
2.4 Summary 27

Chapter Three Power System Reliability Assessment

3.1 Electric Power System Reliability 28
3.1.1 Generation System 31
3.1.2 Transmission System 31
3.1.3 Distribution System 32
3.2 Electric Power Distribution Reliability 33
3.2.1 Distribution System Layout 33
3.2.2 Comparison of Different System Designs 38
Chapter Four Comparison between the IEEE and NEC Sudan

4.1 Case Study of Distribution Feeder Reliability
 4.1.1 Practical case study of the IEEE Std 1366™ – 2003
 4.1.2 Practical case study of NEC Sudan
 4.1.3 Compare the Results

4.2 Substation Configuration Reliability Assessment
 4.2.1 Standard Operating Conditions
 4.2.2 Operating conditions in some of substation in the NEC Sudan

4.3 Summary

Chapter Five Reliability Improvement

5.1 General Ways to Improve the Reliability

5.2 Proposals to improve the Reliability
 5.2.1 University of California
 5.2.2 Korea Electric Power Corporation (KEPCO)

5.3 Summary

Chapter Six Conclusions and Recommendations

6.1 Conclusions

6.2 Recommendations
 References
 Appendices
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Basic Division of the Reliability of the Electric Power System</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Percent of U.S. Businesses Disrupted By the Given Problem</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Incremental Cost of Reliability</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Classification of reliability indices</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Reliability Indices Percentage using in USA Utilities</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Functional zones and Hierarchical levels in an electric power system</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Effect of circuit length on SAIFI for one utility in the southwest U.S.</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of circuit voltage on SAIFI for one utility in the southern U.S.</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Overall Electric Power Systems</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Substations layout</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Simple Radial Distribution Systems</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Alternative feed distribution arrangement</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Alternative Feed Arrangements with DR</td>
<td>40</td>
</tr>
<tr>
<td>3.6</td>
<td>Two fundamentally different approaches</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>Basic reliability assessment schemes</td>
<td>45</td>
</tr>
<tr>
<td>3.8</td>
<td>Part of the network contains a one sequence component and two parallel components</td>
<td>47</td>
</tr>
<tr>
<td>3.9</td>
<td>Representation of state transition of the system in figure 3.7</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Bus bar outgoing feeders</td>
<td>57</td>
</tr>
<tr>
<td>4.2</td>
<td>A substation design with two sub-transmission lines and two transformers</td>
<td>63</td>
</tr>
<tr>
<td>4.3</td>
<td>represented the above substation by three components</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>Representation of state transition of the system shown in Figure 4.3</td>
<td>65</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 2.1 Equations of Reliability Indices for Position Loads include the number of customers 21
Table 2.2 Equations of Reliability Indices of the Position Loads include the load (KVA) 22
Table 2.3 Equations of Reliability Indices for Position Loads include the number of substations (or transformers) 22
Table 2.4 Equations of system reliability indices (Sustained interruption indices include the customer's data) 23
Table 2.5 Equations of system reliability indices (Sustained interruption indices include the loads data) 23
Table 2.6 Equations of system reliability indices (Momentary interruption indices) 24
Table 2.7 The relationship between indices of system reliability and reliability indices of load 24
Table 2.8 Comparison of the Reliability of Different Distribution Configurations 26
Table 3.1 Suitable states for the system in Figure 3.7 47
Table 4.1 Outage data for 1994 51
Table 4.2 Extracted customers who were interrupted 52
Table 4.3 Interrupted device operations 53
Table 4.4 General estimate data of feeder1 57
Table 4.5 Interruption data estimate from feeder1 58
Table 4.6 Estimate data for operating outage device 58
Table 4.7 Sustained interruption estimated data for feeder1 59
Table 4.8 Reliability Data of study Substation 66
Table 5.1 Ways to improve the reliability of the system for electrical power grid consumers 75
Table 5.2 Ways to improve the reliability of the electricity system to a network source of nutrition 76