بسم الله الرحمن الرحيم

قال تعالى:

(225) الله لا إله إلا هُو الْحَيُّ الْقَيُّومُ لا تَأْخُدُهُ سِنَةٌ وَلا نَوْمٌ لهُ مَا فِي السَّمَاوَاتِ وَمَا فِي الأرْض مَن دَا الذِي يَشْفَعُ عِنْدَهُ إلا بإدْنِهِ مَا فِي السَّمَاوَاتِ وَمَا خَلْفَهُمْ وَلا يُحِيطُونَ بِشَيْءٍ مِّنْ عِلْمِهِ إلا يَعْلَمُ مَا بَيْنَ أَيْدِيهِمْ وَمَا خَلْفَهُمْ وَلا يُحِيطُونَ بِشَيْءٍ مِّنْ عِلْمِهِ إلا يَعْلَمُ مَا بَيْنَ أَيْدِيهِمْ وَمَا خَلْفَهُمْ وَلا يُحِيطُونَ بِشَيْءٍ مِّنْ عِلْمِهِ إلا يعالَمُ اللهُ مَا بَيْنَ أَيْدِيهِمْ وَمَا خَلْفَهُمْ وَلا يُحِيطُونَ بِشَيْءٍ مِّنْ عِلْمِهِ إلا يعالَمُ اللهُ مَا بَيْنَ أَيْدِيهِمْ وَمَا خَلْفَهُمْ وَلا يُحِيطُونَ بِشَيْءٍ مِّنْ عِلْمِهِ إلا يعالَمُ اللهُ مَا شَاء وَسِعَ كُرْسِينَهُ السَّمَاوَاتِ وَالأَرْضَ وَلا يَوُودُهُ حِقْظُهُمَا وَهُو الْعَلِيُ الْعَطِيمُ (256)

صدق الله العظيم

سورة البقرة الآية من(225 - 256)

dedication

We dedicate this project to may teach us a word and gave us courage and knowledge and then.

Γο our parents
To our brothers
To our friends (BSC&MSC student)
To our Academy of Engineering science
To our Sudan university of science Technology
To our country

ACKNOWLEDGMENTS

First of all we will thank our Allah and we would like to express our sincere appreciation and gratitude to my supervisor. Dr Salah Elfaki Elrofai how is desired to creation growing and giving me the opportunity of writing the thesis here at the Chair of Theoretical Information Technology. My most sincere gratitude to professor harmed Ibrahim for such good care, encouragement and patience that highly contributed to the successful finishing of this thesis and also Thanks to my family and friends for their support during my work .

Table of Contents

Contents	Description	Page number
Holly Quran		IV
dedication		IV
Acknowledgment		III
Abstract		XIV
Abstract (Arabic)		XV
Table of contents		IV
List of Figures		VII
List of Table		IX
List of Abbreviation		X
Chapter One	Introduction	
1.1	Preface	1
1.2	Objective	2
1.3	Problem statement	2
1.4	Methodology	3
1.5	Thesis outline	3
Chapter Two	Wireless background	
2.1	Wireless Environment	4
2.2	Traditional Mobile Wireless Systems	7

Contents	Description	Page number
2.3	The Standard IEEE 802.11	10
Chapter Three	Multi carrier and OFDM	
3.1	Multi carrier transmission	12
3.2.	Introduction to OFDM	13
3.3	OFDM modulation	14
3.4	Pulse shaped OFDM	16
3.5	Gener principles	18
3.5.1	Models for high power Amplifiers	23
3.5.2	Operating point of the amplifier	25
3.6	Peak average power ratio(PAPR)	26
Chapter Four	PAPR REDUCTION	
4.1	Mitigation technique	28
4.2	Reduction Methods	28
4.2.1.	Clipping	28
4.2.2	Circle clipping	30
4.2.3	Square clipping	31
4.2.4	Polygon clipping (octagon	33
	clipping)	
4.3	Clipping and filter	35
4.4	Proposed method	36
Chapter Five	SIMULATION RESULTS	
5.1	Simulation result	39

Contents	Description	Page number
5.1.1	Case one simulation result	40
5.1.2	Case two simulation result	41
5.1.3	Case three simulation result	43
5.1.4	Case four simulation result	45
5.1.5	Case five simulation result	46
5.1.6	Case six simulation result	47
Chapter six	Conclusion and recommendation	
6.1	Conclusion	49
6.1.1	Case one	49
6.1.2	Case two	50
6.1.3	Case three	50
6.1.4	Case four	50
6.1.5	Case five	50
6.1.6	Case six	50
6.2	Recommendation	53

List of Figures

Figure	Figure Name	Page No.
Figure 2:1	Shows multipath components.	5
Figure 2:2	Shows two multipath components and Rayleigh fading	5
Figure 2:3	shown 5-GHz frequency spectrum allocations	11
Figure 3:1	block diagram of an OFDM system	18
Figure 3:2	OFDM spectrum for N subcarriers	20
Figure 3:3	OFDM signal in frequency domain	20
Figure 3:4	OFDM signal in time domain	23
Figure 3:5	Input and output back-off.	25
Figure 3:6	OFDM transmitter basic scheme	26
Figure 4:1	Original System with out reduce PAPR	28
Figure 4:2	Clipping function	29
Figure 4:3	Out-of-band radiation	29
Figure 4:4	Convention clipping	30
Figure 4:5	Square clipping method	31

Figure	Figure Name	Page No
Figure 4:6	Block diagram of octagon clipping method	34
Figure 4:7	FFT filter block diagram	36
Figure 4:8	conventional clipping and filter	36
Figure 4:9	Proposed method	37
Figure 5:1	original system without clipping and filter	41
Figure5:2	original system circle clipping without filter	42
Figure5:3	original system square clipping without filter	43
Figure5:4	original system square clipping with filter	44
Figure5:5	original system circle clipping with filter	45
Figure5:6	One ,two, three times octagon clip and filter	46
Figure5:7	Conventional and proposed method	47
Figure5:8	increase number of repeat clipping and filter from Bounded distortion	48

List of table

Table	Table name	Table page
Table 5:1	SIMULATION parameters	40
Table 6:2	Comparison between the existing and the proposed methods	51

Abbreviation

Abbreviation Name	Abbreviation
ACK	Acknowledge
AWGN	additive white Gaussian noise
ADSL	asymmetric digital subscriber loop
BER	Bit Error Rates
BEP	bit error probability
CORDIC	Coordinate Rotation Digital Computer
CCDF	complementary cumulative distribution function
CTS	clear-to-send
CDMA	Code Division Multiple Access
DFT	Discrete Fourier Transform
DSL	digital subscriber line
DMT	discrete multi-tone
DAB	digital audio broadcasting

Abbreviation Name	Abbreviation
DSP	digital signal processing
DAC	digital-to-analog converter
DTVB	digital terrestrial video broadcasting
FIR	Finite Impulse Response Filter
FLASH-OFDM	Fast Low-latency Access with Seamless Handoff OFDM
FDM	frequency division multiplexing
FH	frequency hopping
FFT	fast Fourier transform
GSM	Global System for Mobile telecommunications
ICI	inter carrier interference
IDFT	Inverse Discrete Fourier Transform
IBI	Inter block interference
IEEE	Institute of Electrical Electronic Engineering

Abbreviation Name	Abbreviation
ISI	Inter-symbol interference
ICI	inter-carrier interference
IFFT	Inverse Fast Fourier Transform
LTE	Long Term Evolution
LAN	Local Area Network
LOS	line of sight
MAN	metropolitan area network
MIMO	multi input multi out put
MBWA	mobile broadband wireless access
OFDM	Orthogonal Frequency Division Multiplexing
OQAM	offset quadrature amplitude modulation
OA	operational amplifier
PAPR	peak-to-average power ratio
QAM	quadrature amplitude modulation
RTS	request-to-send

Abbreviation Name	Abbreviation
RF	Radio Frequency
SSPA	solid state power amplifiers
TDMA	Time division multiple access
TWTA	traveling wave tube amplifiers
TDM	time-division multiplexing
3GPP	Third Generation Partnership Project
3G	Third Generation
VDSL	very high speed DSL
VLSI	very large scale integrated circuits
Wi-MAX	Worldwide Interoperability for Microwave Access
WCDMA	Wide Band CDMA
WLAN	Wireless Local Area Network

Abstract

In the last years wireless communications have experienced a fast growth. However, wireless channels have some drawback just like the multi-path fading. Orthogonal Frequency Division Multiplexing (OFDM) has been an attractive solution for multi-path fading channels, An important problem of OFDM systems is the high peak-to-average power ratio (PAPR).

There are several ways to reduce the PAPR of OFDM systems .A simple technique is clipping such as circle clipping, and square clipping, those methods are called conventional clipping methods, clipping has an effect called Out-of-band noise (OOB), which degrade the system performance, this noise can be eliminated by filter.

In this project octagonal clipping has been proposed because it is less complex instead of conventional clipping and also using FFT-IFFT filter instead of traditional FIR filters .iterated octagonal clipping and filtering several times in order to reduce to high peak-to-average power ratio (PAPR).

The proposed method has been tested with MATLAB program, the simulation results show that the proposed technique performs better than the existing ones the improvement achieved compared to the old method is equal to 37.3% after third alteration process.

المستخلص

شهدت الإتصالات اللاسلكيه تتطوراً سريعاً في السنوات الاخيره برغم من أن القنوات الاسلكية لها عيوب مثل الإضمحلال المسارات المتعدده وأصبح المزج بتقسيم التردات المتعامده حل جاذ ب لإضمحلال المسارات المتعدده ومن أهم المشاكل لنظام المزج بتقسيم التردات المتعامد هو إرتفاع نسبه قمم القدره لمتوسط القدره.

هنالك عدة طرق لتقليل إرتفاع نسبه قمم القدره لمتوسط القدره في أنظمه المزج بتقسيم التردات المتعامد من أسهل هذه الطرق تقنيات التقليم مثل تقليم الدائره والتقليم المربع هذه الطرق تسمي طرق التقليم التقليدي،التقليم له تاثير يسمي الضجيج خارج النطاق والزي يقلل من أداء النظام هذا الضجيج يمكن ازالته بأستخدام المرشح.

في هذا المشروع تم اقتراح التقليم الثماني بدلاً من التقليم التقليدي لانه اقل تعقيدا اليضا إستخدام مرشح تحويل فوريل العكسي السريع بدلا من مرشح استجابه النبضه المحدده، تم تكرار التقليم الثماني والترشيح عدد مرات لتقليل ارتفاع نسبه قمم القدره لمتوسط القدره.

الطريقه المقترحه تم اختبارها ومحاكاتها بواسطة برنامج الماتلاب ،و نتائج المحاكاه اوضحت ان الطريقه المقترحه افضل من الطرق الموجوده وبمقارنتها بلطرق القديمه وجد أن التحسين المحقق يساوي % 37.3 من الطريقه القديمه بعد التكرار الثالث.