Table of Contents

<table>
<thead>
<tr>
<th>Content</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>II</td>
</tr>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>مستخلص</td>
<td>IV</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>V</td>
</tr>
<tr>
<td>List of Figures</td>
<td>VIII</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XI</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>XII</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>XIII</td>
</tr>
</tbody>
</table>

Chapter One: General Review

1.1 Introduction 1
1.2 Problem Statement 1
1.3 Aims and Objectives 1
1.4 Methodology 2
1.5 Outlines of the Thesis 2

Chapter Two: PID Controller Theory

2.1 Introduction 3
2.2 PID representations 5
2.3 Three terms control 6
2.4 Proportional control 6
 General qualitative features of proportional control 9
2.5 Integral control 10
 General qualitative features of (PI) control 12
2.6 Derivative control
 2.6.1 Proportional and derivative control (PD) 14
 2.6.2 General qualitative features of (PD) control 15

2.7 Proportional-Integral-Derivative (PID) control 16

2.8 Series (interacting) PID Controllers 17

2.9 Ideal PID 18

2.10 Parallel (non interacting) PID controllers 19

2.11 PID Control with Derivative in the Feedback Loop 19

Chapter Three: PID Controller Tuning Methods

3.1 Introduction 22

3.2 Tuning methods for PID Controller 24
 3.2.1 Ziegler-Nichols tuning methods 25
 3.2.2 A Modified Ziegler–Nichols method 29
 3.2.3 Assessment of Ziegler-Nichols Tuning 31
 3.2.4 Chien–Hrones–Reswick (CHR) PID Tuning method 32
 3.2.5 The Cohen-Coon Method 33
 3.2.6 TheWang–Juang–Chan Tuning method 35
 3.2.7 Optimum PID Controller Design 35
 3.2.8 Analytical Tuning Methods 38

Chapter Four: Simulations and Results

4.1 Introduction 41

4.2 Zeigler-Nichols Tuning Method 42

4.3 Chien-Hrones-Reswick (CHR) Tuning Method 44

4.4 Cohen-Coon Tuning Method 45
4.5 Wang-Juang-Chan Tuning Method 46
4.6 Optimum PID Tuning Method 47
4.7 Haalman Tuning Method 49
4.8 Comparison between the Tuning Methods 50
4.9 Dissection 50

Chapter Five: Experimental Results
5.1 Introduction 53
5.2 Zeigler-Nichols method 54
5.3 (CHR) - Fist method 55
5.4 (CHR) – Second method 56
5.5 Cohen-Coon tuning method 57
5.6 ISE tuning method 58
5.7 ISTE tuning method 59
5.8 IST^2E tuning method 60
5.9 Haalman tuning method 61
5.10 Comparison between The simulation results and the practical results 63
5.11 Dissection 64

Chapter Six: Conclusions and Recommendations
6.1 Conclusions 65
6.2 Recommendations 65

References 66

Appendixes