Abstract

A study of combustion process in Khartoum North Steam Power Plant.

Improving the efficiency of burners and furnaces is one of the key issues for reducing fuel consumption and thus also pollutant gas emissions. Even small improvements in burner energy efficiency and performance can have significant impacts in a continuous operation. For optimizing burner efficiency of Khartoum North Power Station (KNPS) investigation of atomization mixing process was carried out by using Fluent CFD code. The results in steam and heavy fuel oil pressures were found to be 13.2 bars for heavy fuel oil and 8.4 bar for steam, in stead of 10 bar for heavy fuel oil and 8.5 bar for steam. The problems of emission reduction in gaseous of pollutants, particularly of CO, NOₓ and SO₂ are definite necessity because of permanent intensification of combustion process and rigorous environmental protection principles. This forces to develop new methods of combustion technologies and burners construction in order to reduce the pollutant emissions. The results indicate that significant NOₓ reduction can be obtained through spray steam at post combustion with flue gas recirculation to produce low flame temperature and dissolving NO and SO₂. The resulting steam injection is reduces both thermal and fuel NOₓ production. These results indicate the effectiveness of NOₓ reduction techniques is directly linked to the amount of injected steam rate and the quality of the fuel. Reductions in NOₓ of up to 85% can be obtained simply through controlled use of steam injection. The variations in fuel characteristics such as viscosity, distillation curve, carbon residue, and ash composition limits the potential emissions reduction and maintain stable combustion.
الملخص

دراسة اجراء الاحتراق بمحطة بحري البخاري

تحسين كفاءة المحارق وغمغمة الاحتراق للغلايات واحدة من القضايا الرئيسية للحد من استهلاك الوقود وبالتالي من انبعاثات الغازات الملوثة. بالنسبة للمحرق التحسينات الصغيرة في كفاءة استخدام الطاقة والأداء يمكن أن تكون لها تأثيرات هامة بالأخص إذا كان المحرك يعمل باستمرار كمحارق الغلايات. لتحسين كفاءة المحارق العاملة بمحطة الخرطوم بحري البخاري تم التحقيق في عملية الانحلال لزيت الوقود الثقيل بواسطة الخلط بين زيت الوقود الثقيل والبخار وذلك باستخدام برنامج الحاسوب (CFD) للوصول لضغط مثالي للخلط. النتائج التي تم الحصول عليها بار لزيت الوقود الثقيل 13.2 بار لزيت الوقود الثقيل و8.4 بار للبخار بدلاً من الضغوط المستخدمة بالمحطه وهي 10 بار لزيت الوقود الثقيل و8.5 بار للبخار.

المشاكل الناتجة من تقليل انبعاثات الغازية الملوثة للبيئة الناتجة من عمليات الاحتراق وخصوصاً أول ايسيك الكربون و ايسيك النايتروجين بالإضافة الى ثاني ايسيك الكبريت حتى تصبح ملائمة للنسب المحدد وملائمة للمبادئ الصارمة لحماية البيئة ادى الى الدفع بقوه الى استخدام تكنولوجيا حديثه للاحتراق و تصاميم للمحارق من اجل الحد من الانبعاثات الملوثة. وتشير النتائج الى ان مهمة الحد من ايسيك النايتروجين يمكن الحصول عليها عن طريق رش بخار الماء في الغازات قبل خروجها الى الهواء ومن ثم استخدام جزء من الخليط واعداده مع هواء الاحتراق. هذه الطريقة
ادت إلى انخفاض درجة حرارة اللهب مما أدى إلى انخفاض
اكسيد النيتروجين المكونه حرارياً والمكونه من
النيتروجين المصاحب للوقود و ازابة اول اكسيد الربون و
ثاني اكسيد الكبريت.
وتشير النتائج إلى فعالية تقنيّة حقن البخار في خفض
اكسيد النيتروجين و ارتباطها مباشرة بقدرة و معدل حقن
البخار بالإضافة إلى نوعية الوقود المستخدم . اعتر الـ
الطريقه إلى تخفیض أكسيدي النيتروجين بنسبة تصل إلى 85
% يمكن الحصول عليها بكل بساطة من خلال الاستخدام الحكيم
لحقيق البخار.
التياثين في خصائص الوقود مثل اللوزجة ، منحنى التقطير
والمخلفات ، وتكوين الرماد تمكن من خفض الانبعاثات
والحفاظ على استقرار الاحتراق.
Acknowledgments

I would like to express my sincere gratitude and appreciation to Professor Dr. Sabir Mohamed Salih, for his continual support, encouragement, and enthusiasm. His knowledge, experience, guidance, and patience have also benefited me immensely. I would also like to express my deepest gratefulness to all the engineering staff of Khartoum North Power Station for their far cooperation and help in my research. The completion of this dissertation and the research involved in its production could not have been done without the assistance of the mechanical engineering department staff.
Without even one of you, this paper would not have been possible.

Before and after all thanks to ALLAH for every things.
Table of Contents

Abstract
--- I

Acknowledgments
--- IV

Table of Contents
--- V

List of Figures
--- IX

List of Tables
--- XIV

ACRONYMS
--- XVII

Chapter 1:

1. 1 Introduction
--- 1

1. 2 Problem statements
--- 3

1. 3 Research objectives
--- 3

1. 4 Research Scope
--- 4

1. 5 Research methodologies
--- 4

1. 6 Study area
--- 5

Chapter 2:

2. 1 Boiler
--- 6

2. 1. 1 Types of utility boilers
--- 6

2. 1. 2 Boiler Losses
--- 7

2. 2 Burners
--- 9

2. 2. 1 Oil burner’s classification
--- 10

2. 2. 1. 1 Pressure jets
--- 10

2. 2. 1. 2 Rotary atomizers
--- 11

2. 2. 1. 3 Blast atomizers
--- 11

2. 2. 1. 4 Low-NO_x burners (LN Bs)
--- 13

2. 2. 1. 5 Advanced low NO_x burners (ALNB)
--- 14

2. 2. 1. 6 Ultra low-NO_x burners
--- 14

2. 2. 2 Dual Burner Register
--- 15

2. 2. 3 Efficient Burner Technologies
--- 16

2. 2. 4 Burner control
--- 17

2. 3 Fuel Oil
--- 17

2. 3. 1 Oil fuel properties
--- 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.4 Trend 3 results analysis</td>
<td>106</td>
</tr>
<tr>
<td>6.2 Summary of experimental results analysis and discussion</td>
<td>113</td>
</tr>
<tr>
<td>Chapter 7:</td>
<td></td>
</tr>
<tr>
<td>CONCLUSIONS AND OBSERVATIONS</td>
<td>143</td>
</tr>
<tr>
<td>References</td>
<td>146</td>
</tr>
<tr>
<td>Appendix</td>
<td>151</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2.1 Boiler efficiency as a function of fuel and air input --------- 26
Figure 3.1 Relationship between CO, NO and furnace temperature ---- 28
Figure 3.2 (a) and (b): Effects of fuel bound nitrogen on total fuel
NO\textsubscript{x} produced and fractional fuel nitrogen conversion ------ 31
Figure 2.1 Relationship between O\textsubscript{2}, CO\textsubscript{2} and excess air --------- 33
Figure 3.3 Overfire air system layout ----------------------------------- 38
Figure 3.4 Flue gas recirculation technique --------------------------- 39
Figure 3.5 Reburn system layout --------------------------------------- 41
Figure 3.6 The NO\textsubscript{x} control technologies for heavy fuel oil -------- 43
Figure 4.1 Burner tip mixing area -- 52
Figure 4.2 Actual current values simulation for [A] Total pressure
[B] Turbulence K.E. [C] Velocity magnitude m/s
[D] Velocity vectors --- 55
Figure 4.3 Actual current values static temperature Contours ----------- 55
Figure 4.4 Designed values simulation for [A] Total pressure
[B] Turbulence K.E. [C] Velocity magnitude m/s
[D] Velocity vectors --- 56
Figure 4.5 Estimated values by iterations simulation for
magnitude m/s [D] Velocity vectors ------------------------------- 57
Figure 4.6 Static temperature contours of the optimum estimated
values [By iteration] --- 58
Figure 4.7 [a], [b] Simulation of the ignition and reaction zone ------- 60
Figure 4.8 Illustrate typical results for a H.F.O diffusion flame
at recommended pressures --- 60
Figure 4.9 Show damping effect of secondary air on symmetric
section of full developed flame -------------------------------------- 61
Figure 5.1 Schematic diagram for phase two boiler --------------------- 64
Figure 5.2 Sketch diagram for DF burner ------------------------------- 65
Figure 5.3 The relation between burner load and combustion air ------- 67
Figure 5.4 Flow diagram of combustion reactants and products ------- 77
Figure 5.5 Energy balance diagram ... 78
Figure 5.6 Chemical equilibrium analyses for steady flow 80
Figure 5.7 The relation between X & Y For Sudanese HFO 81
Figure 5.8 Combustion test rig and Test-rig furnace 89
Figure 6.1 Effect of air fuel ratio on CO, NO and SO\(_2\) concentration without using any reduced techniques 92
Figure 6.2 Effect of 10\(^0\) FGR into CO, NO and SO\(_2\) concentration at different air fuel ratios .. 93
Figure 6.3 Effect of 20\(^0\) FGR into CO, NO and SO\(_2\) concentration at different air fuel ratios .. 94
Figure 6.4 Effect of 25\(^0\) FGR onto CO, NO and SO\(_2\) concentration with different air fuel ratios .. 94
Figure 6.5 Effect of 30\(^0\) FGR and air fuel ratio on CO, NO and SO\(_2\) concentration at different air fuel ratios 95
Figure 6.6 Effect of 35\(^0\) FGR and air fuel ratio onto CO, NO and SO\(_2\) concentration ... 96
Figure 6.7 (a) & (b) Comparison values of CO at different air fuel ratios with or without FGR .. 97
Figure 6.8 (a) & (b) Different arm positions and values of NO for FGR technique ... 99
Figure 6.9 (a) & (b) Different arm positions and values of SO\(_2\) for FGR technique ... 101
Figure 6.10 Effect of air fuel ratio into CO, NO and SO\(_2\) concentration without FGR but with steam injection 103
Figure 6.11 Effect of (10\(^0\) FGR with steam injection) and air fuel ratio into CO, NO and SO\(_2\) concentration 103
Figure 6.12 Effect of (20\(^0\) FGR with steam injection) and air fuel ratio onto CO, NO and SO\(_2\) concentration 104
Figure 6.13 Effect of (25\(^0\) FGR with steam injection) and air fuel ratio on CO, NO and SO\(_2\) concentration 105
Figure 6.14 Effect of (30\(^0\) FGR with steam injection) and air fuel ratio on CO, NO and SO\(_2\) concentration 105
Figure 6.15 Effect of (35\(^0\) FGR with steam injection) and air fuel ratio on CO, NO and SO\(_2\) concentration 105
ratio on CO, NO and SO₂ concentration

Figure 6.16 (a) & (b) Different air fuel ratios and values of CO
for FGR with steam injection

Figure 6.17 (a) & (b) Different air fuel ratios and values of NO
for FGR with steam injection

Figure 6.18 (a) & (b) Different air fuel ratios and values of SO₂
for FGR with steam injection

Figure 6.19 (a) & (b) Different air fuel ratios and values of SO₂
for FGR with enough steam injection

Figure 6.20(a) & (b) Relations between CO concentration with air
fuel ratios and both FGR only or FGR with steam
injection

Figure 6.21 (a) & (b) Illustrate the relations between NO
concentration with air fuel ratios and both, FGR only,
or FGR with steam injection

Figure 6.22 (a) & (b) The relations between SO₂ concentration
with air fuel ratios and both FGR only or FGR with
steam injection

Figure 6.23 (a) & (b) CO concentrations with or without steam
injection at different air fuel ratios, without FGR

Figure 6.24 (a) & (b) CO concentrations at 10° FGR with or
without steam injection at different air fuel ratios

Figure 6.25 (a) & (b) CO concentration at 20° FGR with or
without steam injection at different air fuel ratios

Figure 6.26 (a) & (b) CO concentrations at 25° FGR with or
without steam injection at different air fuel ratios

Figure 6.27 (a) & (b) CO concentrations at 30° FGR with or
without steam injection at different fuel ratios

Figure 6.28 (a) & (b) CO concentrations at 35° FGR with or
without steam injection at different air fuel ratio

Figure 6.29 (a) & (b) NO concentrations at 0° FGR with or
Figure 6.30 (a) & (b) NO concentrations at 10° FGR with or without steam injection, at different air fuel ratios ------- 127

Figure 6.31 (a) & (b) NO concentrations at 20° FGR with or without steam injection, at different air fuel ratios ------- 128

Figure 6.32 (a) & (b) NO concentrations at 25° FGR with or without steam injection, at different air fuel ratios ------- 129

Figure 6.33 (a) & (b) NO concentrations at 30° FGR with or without steam injection at different air fuel ratios ------- 131

Figure 6.34 (a) & (b) NO concentrations at 35° FGR with or without steam injection at different air fuel ratios ------- 132

Figure 6.35 (a) & (b) SO₂ concentrations at 0° FGR with or without steam injection at different air fuel ratios ------- 133

Figure 6.36 (a) & (b) SO₂ concentrations at 10° FGR with or without steam injection at different air fuel ratios ------- 135

Figure 6.37 (a) & (b) SO₂ concentrations at 20° FGR with or without steam injection at different air fuel ratios ------- 136

Figure 6.38 (a) & (b) SO₂ concentrations at 25° FGR with or without steam injection at different air fuel ratios ------- 137

Figure 6.39 (a) & (b) SO₂ concentrations at 30° FGR with or without steam injection at different air fuel ratios ------- 138

Figure 6.40 (a) & (b) SO₂ concentrations at 35° FGR with or without steam injection at different air fuel ratios ------- 139

Figure (A - 1) Low NOₓ oil burner --- 151

Figure (A - 1) Low NOₓ oil burner --- 152

Figure (A - 3) KNPS boiler furnace -- 153

Figure (A - 4) Combustion test rig --- 154
List of Tables

Table 2.1 Key properties for selected fuels as classified by ASTM ------- 19
Table 2.2 Sudanese heavy oil fuel average properties -------------------------- 19
Table 2.3 Comparison between Sudanese with imported fuel oil properties -- 20
Table 3.1 Nitrogen oxides --- 27
Table 3.2 NOx Control techniques --- 48
Table 4.1 Comparison between KNPS unit 3 boiler burner designed and actual measured values -- 53
Table 5.1 Boiler designed technical data --- 63
Table 5.2 KNPS Operation condition -- 63
Table 5.3 Burner data --- 66
Table 5.4 FD fan specifications --- 66
Table 5.5 Phase two unit three 100% and 50% performance test --------- 69
Table 5.6 Khartoum North Power Station Exhaust gases analysis ------------------------- 70
Table 5.7 Readings which are taken at blow-down process ------------------- 72
Table 5.8 Fuel Factors and Higher Heating Values --------------------------------------- 75
Table 5.9 Enthalpies of formation [KJ/mol] of compound at 25°C, 1atm --- 80
Table 5.9 Relation between gate arm angle and flue gas recirculation rate -- 88
Table 5.10 The relation between control arm angle and air fuel ratio ------ 90
Table 6.1 Effect of air fuel ratio on CO, NO and SO2 concentration without using any reduced techniques -- 92
Table 6.2 CO, NO and SO2 concentration at 10° FGR arm angle with different air fuel ratios -- 93
Table 6.3 CO, NO and SO2 concentration at 20° FGR arm angle with different air fuel ratios -- 93
Table 6.4 CO, NO and SO2 concentration at 25° FGR arm angle with variable air fuel ratios -- 94
Table 6.5 CO, NO and SO2 concentration at 30° FGR arm angle with different air fuel ratios -- 95
Table 6.6 CO, NO and SO2 concentration at 35° FGR arm angle with different air fuel ratios -- 95
Table 6. 7 Values of CO at different arm positions with and without FGR

Table 6. 8 Different arm positions and values of NO for FGR Methods

Table 6. 9(a) Values of SO₂ for different control arm angle with and without FGR

Table 6. 9(b) CO, NO and SO₂ average reduction% for FGR technique

Table 6. 10 CO, NO and SO₂ concentration at different air fuel ratios, without FGR effect, with steam injection

Table 6. 11 CO, NO and SO₂ concentration at different air fuel ratios with 10⁰ FGR and steam injection

Table 6. 12 CO, NO and SO₂ concentration at different air fuel ratios with 20⁰ FGR and steam injection

Table 6. 13 CO, NO and SO₂ concentration at different air fuel ratios with 25⁰ FGR and steam injection

Table 6. 14 CO, NO and SO₂ concentration at different air fuel ratios with 30⁰ FGR and steam injection

Table 6. 15 CO, NO and SO₂ concentration at different air fuel ratios with 35⁰ FGR and steam injection

Table 6. 16 Values of CO for steam injection with or without FGR at different air fuel ratios

Table 6. 17 Different arm positions and values of NO for both FGR and steam injection technique

Table 6. 18 Values of SO₂ for different control arm angle with steam injection

Table 6. 19 Values of SO₂ for enough steam (maximum steam rate), with or without FGR at different air fuel ratios

Table 6. 20 Reduction% of CO, NOₓ and SO₂ concentration for steam injection technique (at post combustion)

Table 6. 21 Reductions percent for FGR and Steam injection techniques when λ = 1.1 same as KNPS

Table (A - 1) Fuel oil grades established by ASTM

Table (A - 2) General average oil fuel properties
Table (A - 3) No.2 Fuel oil stack loss (%) --- 157

Table (A - 4) The auto-ignition temperature (The minimum temperature required to ignite a gas or vapor in air without a spark or flame) for some common fuels --- 158

Table (A - 5) Emission Factors Recommended for Oil and Gas Industry Sources --- 159

Table (A - 5) Ecoline 6000 accuracy --- 160

Table (A – 6) Techniques for controlling emissions during combustion (Summary) --- 161
ACRONYMS

<table>
<thead>
<tr>
<th>Abbr.</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABMA</td>
<td>American Boiler Manufacturers Association</td>
</tr>
<tr>
<td>AEL</td>
<td>Alternative Emission Limit</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>BOOS</td>
<td>Burners out of service</td>
</tr>
<tr>
<td>BT</td>
<td>Burner tuning</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
</tr>
<tr>
<td>CEM</td>
<td>Continuous emission monitoring</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>FBC</td>
<td>Fluidized-bed combustion</td>
</tr>
<tr>
<td>FGD</td>
<td>Flue-gas desulfurization</td>
</tr>
<tr>
<td>FGR</td>
<td>Flue gas recirculation</td>
</tr>
<tr>
<td>FIR</td>
<td>Fuel-induced recirculation and forced-internal recirculation</td>
</tr>
<tr>
<td>HAP</td>
<td>Hazardous air pollutant</td>
</tr>
<tr>
<td>ICI</td>
<td>Industrial/commercial/institutional</td>
</tr>
<tr>
<td>IFGR</td>
<td>Induced flue-gas recirculation</td>
</tr>
<tr>
<td>LEA</td>
<td>Low excess air</td>
</tr>
<tr>
<td>LNB</td>
<td>Low-NOₓ burner</td>
</tr>
<tr>
<td>MCR</td>
<td>Maximum continuous rating</td>
</tr>
<tr>
<td>MSW</td>
<td>Municipal solid waste</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrogen oxides</td>
</tr>
<tr>
<td>OFA</td>
<td>Overfire air</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>SCA</td>
<td>Staged combustion air</td>
</tr>
<tr>
<td>SCR</td>
<td>Selective catalytic reduction</td>
</tr>
<tr>
<td>SNCR</td>
<td>Selective noncatalytic reduction</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>UHC</td>
<td>Unburned hydrocarbon</td>
</tr>
<tr>
<td>ULNB</td>
<td>Ultra low-NOₓ burner</td>
</tr>
<tr>
<td>VOC</td>
<td>Volatile organic</td>
</tr>
</tbody>
</table>