CONTENTS

Dedication ... i
Acknowledgement .. ii
Contents ... iii
List of Figures .. vi
List of Tables ... ix
Abbreviations ... x
Abstract (English) ... xiii
Abstract (Arabic) ... xiv

CHAPTER ONE : INTRODUCTION

1.1 General View .. 1
1.2 Literature Review ... 2
1.3 Thesis Layout .. 4

CHAPTER TWO : ANATOMY AND PHYSIOLOGY OF THE HEART

2.1 Location of the Heart ... 5
2.2 Anatomy of the Heart ... 5
2.3 Electric Activation of the Heart 7
2.3.1 Cardiac Muscle Cell ... 7
2.3.2 The Conduction System of the Heart 8
2.3.2.1 Physiologic anatomy of cardiac muscle 8
2.3.2.2 Action potentials in cardiac muscle 8
2.3.2.3 Causes of the long action potential 8
2.3.2.4 Velocity of signal conduction in cardiac muscle 10
2.3.2.5 Duration of contraction 10
2.3.2.6 Summary of the spread of the cardiac impulse through the heart 11
2.4 The Cardiac Cycle 12
2.5 Heart Sounds and Murmurs 15
2.5.1 Normal Heart Sounds 15
2.5.2 Abnormal Heart Sounds 16
2.5.2.1 Systolic Murmurs 17
2.5.2.2 Diastolic Murmurs 20
2.5.2.3 Abnormal First and Second Heart Sounds 22
2.5.2.4 Abnormal Third and Fourth Heart Sounds 24
2.5.2.5 Clicks and Snaps 26

CHAPTER THREE : DESIGN AND IMPLEMENTATION OF ELECTRONIC STETHOSCOPE

3.1 Stethoscope 28
3.1.1 Acoustic Stethoscope 28
3.1.2 Electronic Stethoscope 29
3.2 Design of Electronic Stethoscope 30
3.2.1 Sound Sensor 31
3.2.2 Data Acquisition Circuit 31
3.2.3 Interfacing 32
3.3 Electronic Stethoscope Elements 35
3.3.1 Sound Sensor 35
3.3.2 Data Acquisition Circuit 36
CHAPTER FOUR:
ANALYSIS AND DIAGNOSIS OF HEART SOUNDS

4.1 Introduction ... 63
4.2 Methodology ... 64
4.2.1 Preprocessing .. 65
4.2.2 Segmentation .. 65
4.2.3 Processing ... 65
4.2.4 Segment Parameters ... 65
4.2.5 Segments Correlation ... 66
4.3 Analysis and Diagnosis .. 66

CHAPTER FIVE: RESULTS AND DISCUSSION

5.1 Results ... 76
5.2 Discussion .. 76

CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS

6.1 Conclusions ... 80
6.2 Recommendations .. 80

REFERENCES ... 81

ANNEXES ... 86
Annex (I)
Annex (II)
Annex (III)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure number</th>
<th>Figure Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2-1)</td>
<td>Location of the Heart in the Thorax</td>
<td>1</td>
</tr>
<tr>
<td>(2-2)</td>
<td>The Anatomy of the Heart and Associated Valves</td>
<td>2</td>
</tr>
<tr>
<td>(2-3)</td>
<td>Electrophysiology of the Cardiac Muscle Cell</td>
<td>3</td>
</tr>
<tr>
<td>(2-4)</td>
<td>Rhythmical Action Potentials (in mV) from a Purkinje Fiber and from a Ventricular Muscle Fiber, recorded by means of microelectrodes.</td>
<td>5</td>
</tr>
<tr>
<td>(2-5)</td>
<td>Transmission of the Cardiac Impulse through the Heart Showing the Time of Appearance in Different Parts of the Heart.</td>
<td>8</td>
</tr>
<tr>
<td>(2-6)</td>
<td>The Conduction System of the Heart</td>
<td>9</td>
</tr>
<tr>
<td>(2-7)</td>
<td>Events of the Cardiac Cycle for Left Ventricular Function</td>
<td>10</td>
</tr>
<tr>
<td>(2-8)</td>
<td>Electrophysiology of the Heart</td>
<td>11</td>
</tr>
<tr>
<td>(2-9)</td>
<td>Normal First and Second Heart sounds</td>
<td>13</td>
</tr>
<tr>
<td>(2-10)</td>
<td>Aortic Valve Stenosis</td>
<td>15</td>
</tr>
<tr>
<td>(2-11)</td>
<td>Pulmonary Valve Stenosis compared to Normal Pulmonary valve</td>
<td>16</td>
</tr>
<tr>
<td>(2-12)</td>
<td>Aortic Valve Regurgitation</td>
<td>17</td>
</tr>
<tr>
<td>(2-13)</td>
<td>Abnormal First and Second Heart Sounds</td>
<td>19</td>
</tr>
<tr>
<td>(2-14)</td>
<td>Abnormal Third and Fourth Heart Sounds</td>
<td>21</td>
</tr>
<tr>
<td>(2-15)</td>
<td>Clicks and Snaps</td>
<td>23</td>
</tr>
<tr>
<td>(3-1)</td>
<td>Dr. Laennec Stethoscope</td>
<td>29</td>
</tr>
<tr>
<td>(3-2)</td>
<td>Electronic Stethoscope Circuit Block Diagram</td>
<td>30</td>
</tr>
<tr>
<td>(3-3)</td>
<td>Detailed Electronic Stethoscope Block Diagram</td>
<td>31</td>
</tr>
<tr>
<td>(3-4)</td>
<td>Sound Sensor</td>
<td>35</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3-5</td>
<td>Sound Sensor after Enhancement</td>
<td>36</td>
</tr>
<tr>
<td>3-6</td>
<td>Microcontroller Based Electronic Stethoscope Block Diagram</td>
<td>37</td>
</tr>
<tr>
<td>3-7</td>
<td>An ECP Switch to Reverse Direction (Reverse Transfer)</td>
<td>40</td>
</tr>
<tr>
<td>3-8</td>
<td>Graphic User Interface (GUI)</td>
<td>40</td>
</tr>
<tr>
<td>3-9</td>
<td>Program of Start button</td>
<td>41</td>
</tr>
<tr>
<td>3-10</td>
<td>DLL Used to Program Parallel Port</td>
<td>42</td>
</tr>
<tr>
<td>3-11</td>
<td>Timer1 program</td>
<td>42</td>
</tr>
<tr>
<td>3-12</td>
<td>The Connection between Microcontroller and PC Parallel Port</td>
<td>46</td>
</tr>
<tr>
<td>3-13</td>
<td>Connection of Parallel Port and Data Bus inside PC</td>
<td>47</td>
</tr>
<tr>
<td>3-14</td>
<td>ADC Programming</td>
<td>49</td>
</tr>
<tr>
<td>3-15</td>
<td>Microcontroller Main Program</td>
<td>50</td>
</tr>
<tr>
<td>3-16</td>
<td>Timer Interrupt Service Routine</td>
<td>51</td>
</tr>
<tr>
<td>3-17</td>
<td>ADC Read Function</td>
<td>51</td>
</tr>
<tr>
<td>3-18</td>
<td>Microcontroller Based Electronic Stethoscope</td>
<td>58</td>
</tr>
<tr>
<td>3-19</td>
<td>Setting Audio Device Parameters Window</td>
<td>60</td>
</tr>
<tr>
<td>3-20</td>
<td>Designed Module for Filtering, Displaying and Recording</td>
<td>60</td>
</tr>
<tr>
<td>3-21</td>
<td>Sound File Parameters Window</td>
<td>61</td>
</tr>
<tr>
<td>3-22</td>
<td>Scope Output Displaying Sound Signal Waveform</td>
<td>61</td>
</tr>
<tr>
<td>3-23</td>
<td>Spectrum Scope Window</td>
<td>62</td>
</tr>
<tr>
<td>3-24</td>
<td>PC Based Electronic Stethoscope</td>
<td>62</td>
</tr>
<tr>
<td>4-1</td>
<td>Heart Sound Analysis System Block Diagram</td>
<td>64</td>
</tr>
<tr>
<td>4-2</td>
<td>Segments Detection for Normal Heart Sounds</td>
<td>67</td>
</tr>
<tr>
<td>4-3</td>
<td>Normal Heart Sounds Spectrogram</td>
<td>68</td>
</tr>
<tr>
<td>(4-4)</td>
<td>Segments Detection for Normal S2 Split</td>
<td>69</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>(4-5)</td>
<td>Normal S2 Split Spectrogram</td>
<td>70</td>
</tr>
<tr>
<td>(4-6)</td>
<td>Segments Detection for Aortic Stenosis</td>
<td>71</td>
</tr>
<tr>
<td>(4-7)</td>
<td>Aortic Stenosis Spectrogram</td>
<td>72</td>
</tr>
<tr>
<td>(4-8)</td>
<td>Segments Detection for Mitral Insufficiency</td>
<td>72</td>
</tr>
<tr>
<td>(4-9)</td>
<td>Mitral Insufficiency Spectrogram</td>
<td>73</td>
</tr>
<tr>
<td>(4-10)</td>
<td>Segments Detection for Pulmonary Stenosis</td>
<td>74</td>
</tr>
<tr>
<td>(4-11)</td>
<td>Pulmonary Stenosis Spectrogram</td>
<td>75</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table number</th>
<th>Table Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2-1)</td>
<td>Types of Split S2, Findings During Inspiration and Expiration and Their Causes</td>
<td>23</td>
</tr>
<tr>
<td>(3-1)</td>
<td>ECP Registers</td>
<td>47</td>
</tr>
<tr>
<td>(3-2)</td>
<td>The ECR (Extended Control Register) Configures the ECP</td>
<td>48</td>
</tr>
<tr>
<td>(3-3)</td>
<td>ECP Internal Modes</td>
<td>48</td>
</tr>
<tr>
<td>(4-1)</td>
<td>Normal Heart Sounds Parameters</td>
<td>67</td>
</tr>
<tr>
<td>(4-2)</td>
<td>Heart Sounds Parameters for Normal S2 Split Case</td>
<td>69</td>
</tr>
<tr>
<td>(4-3)</td>
<td>Heart Sounds Parameters for Aortic Stenosis Case</td>
<td>71</td>
</tr>
<tr>
<td>(4-4)</td>
<td>Heart Sounds Parameters for Mitral Insufficiency Case</td>
<td>73</td>
</tr>
<tr>
<td>(4-5)</td>
<td>Heart Sounds Parameters for Pulmonary Stenosis Case</td>
<td>74</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Aortic component of second heart sound</td>
</tr>
<tr>
<td>ADC or A/D</td>
<td>Analog to digital converter</td>
</tr>
<tr>
<td>ADCSRA</td>
<td>Analog to Digital converter Control and Status Register A</td>
</tr>
<tr>
<td>A-V</td>
<td>Atrio-Ventricular</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DLL</td>
<td>Dynamic-link library</td>
</tr>
<tr>
<td>DMA</td>
<td>Direct memory access</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital signal processing</td>
</tr>
<tr>
<td>EC</td>
<td>Ejection click</td>
</tr>
<tr>
<td>ECP</td>
<td>Extended capabilities port</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>EPP</td>
<td>Enhanced parallel port</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier transform</td>
</tr>
<tr>
<td>FIFO</td>
<td>First in first out</td>
</tr>
<tr>
<td>Fs</td>
<td>Sampling Frequency</td>
</tr>
<tr>
<td>HES</td>
<td>Heart energy signature</td>
</tr>
<tr>
<td>HostAck</td>
<td>Host Acknowledge</td>
</tr>
<tr>
<td>HostClk</td>
<td>Host Clock</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz (Cycle / minute)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>I/O</td>
<td>Input / Output</td>
</tr>
<tr>
<td>IrDA</td>
<td>Infrared Data Association</td>
</tr>
<tr>
<td>ISA</td>
<td>Industry Standard Architecture</td>
</tr>
<tr>
<td>ISR</td>
<td>Interrupt service routine</td>
</tr>
<tr>
<td>LPC</td>
<td>Linear prediction coding</td>
</tr>
<tr>
<td>LSB</td>
<td>Least significant bit</td>
</tr>
<tr>
<td>µs</td>
<td>Micro second</td>
</tr>
<tr>
<td>ms</td>
<td>milli second</td>
</tr>
<tr>
<td>m/sec</td>
<td>Meter / second</td>
</tr>
<tr>
<td>MHz</td>
<td>Mega hertz</td>
</tr>
<tr>
<td>mV</td>
<td>milli volt</td>
</tr>
<tr>
<td>op amp</td>
<td>Operational amplifier</td>
</tr>
<tr>
<td>OS</td>
<td>Opening snap</td>
</tr>
<tr>
<td>P2</td>
<td>Pulmonic component of second heart sound</td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
</tr>
<tr>
<td>PDS</td>
<td>Power density spectrum</td>
</tr>
<tr>
<td>PeriphAck</td>
<td>Peripheral Acknowledge</td>
</tr>
<tr>
<td>PeriphClk</td>
<td>Peripheral Clock</td>
</tr>
<tr>
<td>PS/2</td>
<td>Simple bidirectional port</td>
</tr>
<tr>
<td>S1</td>
<td>First heart sound</td>
</tr>
<tr>
<td>S2</td>
<td>Second heart sound</td>
</tr>
<tr>
<td>S3</td>
<td>Third heart sound</td>
</tr>
<tr>
<td>S4</td>
<td>Fourth heart sound</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer System Interface</td>
</tr>
<tr>
<td>Seg.</td>
<td>Segment</td>
</tr>
<tr>
<td>SPP</td>
<td>Standard parallel port</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static Random Access Memory</td>
</tr>
<tr>
<td>STD</td>
<td>Standard of deviation</td>
</tr>
<tr>
<td>STFT</td>
<td>Short Time Fourier Transform</td>
</tr>
<tr>
<td>TFR</td>
<td>Time-Frequency Representation</td>
</tr>
<tr>
<td>USART</td>
<td>Universal Synchronous and Asynchronous serial Receiver and Transmitter</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
</tbody>
</table>
ABSTRACT

Using acoustic stethoscope is not efficient always because of the limited sensitivity of the human ear in addition to the noise and artifact. This fact led to the invention of the electronic stethoscope.

In this thesis an electronic stethoscope has been designed and implemented to process, analyze and record heart sounds in real time. This will help in auscultation and diagnosis. Two types of designs are introduced. The first was microcontroller based electronic stethoscope, while the other was PC based electronic stethoscope.

A system of algorithms for analysis of heart sounds has been applied using time-frequency representations. This system performs calculations to obtain some parameters that give useful indicators and help in diagnosis. The algorithms calculate the timing of heart sound components, the duration of each of them, and their energy then plot their spectrogram. The sound components include first heart sound, second heart sound and abnormalities like murmur.

These algorithms have been applied on normal and abnormal heart sounds in some Sudanese specialized hospitals.

The designed electronic stethoscope gave good and valuable results in recording and analysis of heart sounds.
المستخلص

لاست السماعة الطبية السمعية كفاءة دائما بسبب الحساسية المحدودة للأذن البشرية بالإضافة إلى تأثيرات الضوضاء والأخطاء المضافة. هذه الحقيقة أدت إلى اختراع السماعة الطبية الإلكترونية.

في هذه الأطروحة تم تصميم وتنفيذ سماعة طبية إلكترونية لمعالجة وتحليل وتسجيل أصوات القلب في الوقت الحقيقي، وهذا سيساعد في الاستماع والتشخيص.

تم تقديم نوعين من التصاميم، الأول سماعة إلكترونية باعتماد المتحكم الدقيق بينما كان الثاني سماعة إلكترونية باعتماد الحاسوب الشخصي.

ثم تم تطبيق نظام من الخوارزميات لتحليل أصوات القلب باستخدام تمثيلات الزمن مع التردد. يقوم هذا النظام بالحسابات للحصول على بعض العوامل التي تعطي المؤشرات المفيدة وتساعد في التشخيص.

تقوم الخوارزميات المطبقة باحتساب توقيتات مكونات صوت القلب، مدة كل منها، وطاقتها ثم القيام برسم المخطط الطيفي لها. تتضمن مكونات صوت القلب: الصوت الأول للقلب، والصوت الثاني للقلب، والحالات غير الطبيعية كالهمومية.

تم تطبيق هذه الخوارزميات على أصوات القلب الطبيعية وغير الطبيعية في بعض المستشفيات السودانية المتخصصة.

أعطت السماعة الطبية الإلكترونية المصممة نتائج جيدة وذات قيمة في تسجيل وتحليل أصوات القلب.