بسم الله الرحمن الرحيم

الحمد لله رب العالمين

الرحمن الرحيم

الرَّحِيمِ الرَّحِيمِ

إِيَّاكَ نَعْبُدُنَّ إِيَّاكَ نَسْتَعِينُنَّ إِيَّاكَ نَمُتِّيسُونَ

الصَّرَّاعُ المُسْتَقِيمُ

الصَّرَّاعُ الَّذِينَ أَنْعَمَتْ عَلَيْهِمْ غَيْرَ الْمَغْضُوبِ عَلَيْهِمْ

وَلَا الصَّٰلِحَ الَّذِينَ
ABSTRACT

This research presented a new method for the mass production of a high quality, low cost, sheet metal products using a die, press and transferring mechanism.

The research presented a definition of the tool (die), its design, its parts and the types which differ as per the products and operations concerned.

The researcher selected the progressive die used for mass production, for more elaborated studies because it combines a number of die design and function in one frame. The researcher also discusses the maximum use of raw material (strip layout).

One of the Yarmouk Industrial Complex products formally produced by five individual dies. Anew one progressive die was designed for this product, using the well known package (VISI 15) software dedicated for sheet metal products die and mould design.
قدم هذا البحث طريقة جديدة للإنتاج الكمي لمنتجات الصفائح المعدنية ذات الجودة العالية والأقل تكلفة باستخدام القالب والمكبس كالية تحريكية للقالب.

قدم البحث تعريف لهذه الآداة (القالب) وكيفية تصميمها وتجزئة ووظائفها وانواعها التي تختلف باختلاف المنتجات والعمليات، ثم اختار الباحث نوع واحد من هذه الانواع وهو قالب الإنتاج الكمي التقدمي المستمر (Progressive) لدراسةه بتوسع أكثر لأنه يضم مجموعة من القوالب في طرق تصميمها ووظائفها في إطار واحد وتعرض البحث لامكانية الاستفادة القصوى من المادة الخام.

أُخْتِيَر منتج من مجمع اليرموك الصناعي كان ينتج بواسطة خمسة قوالب مفردة وصمم قالب واحد لانتاج المنتج وتم ذلك باستخدام البرنامج الحاسوبي (Visi 15) المتخصص لتصميم القوالب.
ACKNOWLEDGEMENTS

I would like to thank my Supervisor for his professional advice and assistance. Dr. ALKHAWAD ALI ELFAKI served as a mentor and directed me along the traveled path and he surrendered many valuable days revising my work.

My friends deserve credit for turning monotonous work into a great deal of fun. They always seemed to know when to encourage me to work on this research or do something interesting. Particular thanks go to: M.M. EISA, ALLA ALDEEN KHAIR and G.O. NEAMA, MY brothers and sisters were great friends, and for all in TAFRA engineering company and in ALYARMOUK industrial complex.

Finally, I dedicate this work to my mother and father, who have always given me the inspiration and enthusiasm to accomplish everything I desired. They never pushed me in any one direction, but seemed to wisely guide me down the right road. Thanks Mom and Dad.
Table of Content
Chapter One: Introduction
1-1 General information 1
1-2 Problem definition 2
1-3 Research methodology 2
1-4 Research objectivities 2

Chapter Two: Sheet metal stamping
2.1 The definition of stamping 3
2.2 Sheet metal stamping in comparison with other metal fabrication processes 3
2.3 Sheet metal stamping and its behavior in the metal stamping process:
 2.3.1 Plasticity Theories 5
 2.3.2 Strain Hardening 7
 2.3.3 Shear of Metal in Cutting Operation 8
 2.3.4 Bending and Forming of Sheet-Metal Material 10
 2.3.5 Spring back 13

Chapter Three: metal stamping dies and their functions
3.1 Description of Die 14
3.2 types of dies 15
3.3 Metal stamping Dies ad their construction 29

Chapter Four: Progressive die
4-1 The definition of progressive die: 52
4-2 Strip layout and its calculations 54
 4-2-1 Economies of the Strip 57
 4-2-2 Efficiency of strip calculation 58
4-3 The design process of progressive dies 59
 4-3-1 The clearance between punch and die 61
 4-3-2 Material selection 62

Chapter Five: Progressive die design (case study)
5-1 Computer software’s which are used to design and CAM dies 63
5-2 (VISI 15) definitions about this software 63
 5-2-1 Features of visi 65
5-3 The processes of die design by visi 15 68
 5-3-1 Creating the first strip 68
5-4 Comparison between progressive die and five single dies 96

Chapter Six: Conclusion and recommendation

6.1 Conclusion 98
6.2 Recommendation 99

References 100
Appendices 101

List of Figures

VII
Figure (2-1) Displacement of a particle in time Δt 7
Figure (2-2) Stresses in shear operation 8
Figure (2-3) Effect of shear in piercing operation 9
Figure (2-4) sheared slug 10
Figure (2-5) three basic types of bending 11
Figure (3-1) Metal Stamping die 14
Figure (3-2) Cut off dies 16
Figure (3-3) Blanking dies 17
Figure (3-4) Compound dies 18
Figure (3-5) Trimming dies 19
Figure (3-6) Piercing dies 20
Figure (3-7) Side cam dies 21
Figure (3-8) Bending dies 22
Figure (3-9) Forming dies 23
Figure (3-10) Drawing dies 24
Figure (3-11) Curling dies 25
Figure (3-12) Extruding dies 27
Figure (3-13) Progressive dies 28
Figure (3-14) punch detail 31
Figure (3-15) punch mounting 31
Figure (3-16) pilot detail 33
Figure (3-17) Stationary stripper 35
Figure (3-18) spring stripper 36
Figure (3-19) die plate dimension 38
Figure (3-20) Relive angle 39
Figure (3-21) punch plate section 41
Figure (3-22) Stock supports, stock Lifters 43
Figure (3-23) Stock guides 44
Figure (3-24) Mounting Hardware 45
Figure (3-25) screw mounting of several plates 45
Figure (3-26) Dowel pin assembly 46

Figure (3-27) Die Set 47

Figure (4-1) Progressive die 53

Figure (4-2) strip layout 54

Figure (4-3) strip layout (sequences of operations) 54

Figure (4-4) Sample bracket 56
Figure (4-5) Vertical strip layout of the bracket
Figure (4-6) Horizontal strip layout of the bracket
Figure (4-7) strip layout
Figure (5-1) visi 15 screen
Figure (5-2) outer slide of feeding system unit
Figure (5-3) open progress menu
Figure (5-4) part analysis build
Figure (5-5) neutral fiber set
Figure (5-6) assign neutral fiber value
Figure (5-7) automatic unfolding
Figure (5-8) step by step
Figure (5-9) strip manager
Figure (5-10) strip manager layout
Figure (5-11) add internal punches.
Figure (5-12) create maximum sheared punch
Figure (5-13) cut punch.
Figure (5-14) punches layout.
Figure (5-15) rebuild the strip
Figure (5-16) strip layout
Figure (5-17) create die plate
Figure (5-18) create of backing die plate
Figure (5-19) create of lower die plate
Figure (5-20) create of standard elements.
Figure (5-21) create of lefters.
Figure (5-22) create of bens
Figure (5-23) create of the screws are used to fasten die, backing die and lower plate together.
Figure (5-24) create of stripper plate.
Figure (5-25) clearance between punches and stripper plate.
Figure (5-26) create of backing stripper plate.
Figure (5-27) punches, stripper and backing stripper plates.
Figure (5-28) clearance between punches and backing stripper plate.
Figure (5-29) creation of punch plate.
Figure (5-30) clearance between punch plate and punches
Figure (5-31) creation of backing punch plate
Figure (5-32)A creation of upper plate
Figure (5-32)B creation of upper plate
Figure (5-33) creation of springs
Figure (5-34) creation of springs side view
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5-35)</td>
<td>creation of stripper guides.</td>
</tr>
<tr>
<td>(5-36)</td>
<td>creation of stripper guides side view.</td>
</tr>
<tr>
<td>(5-37)</td>
<td>creation of pilots.</td>
</tr>
<tr>
<td>(5-38)</td>
<td>creation of guide push and guide post(A,B)</td>
</tr>
<tr>
<td>(5-39)</td>
<td>creation of upper, backing punch, punch plates screw.</td>
</tr>
<tr>
<td>(5-40)</td>
<td>creation of hugely, strip guide and stops.</td>
</tr>
<tr>
<td>(5-41)</td>
<td>Finished die</td>
</tr>
<tr>
<td>(5-42)</td>
<td>Finished die front view.</td>
</tr>
<tr>
<td>(5-43)</td>
<td>Finished die top view.</td>
</tr>
<tr>
<td>(5-44)</td>
<td>finished die side view</td>
</tr>
<tr>
<td>(5-45)</td>
<td>Finished die isometric view.</td>
</tr>
</tbody>
</table>
List of Tables

Table	Page
Table (3-1) the relationship between die plate & strip thickness | 39
Table (3-2) the relationship between strip thickness & Relieve angle | 39
TABLE (3-3) Minimum Distance between the Center of a Screw and the Edge of the mounting plate | 44
Table (4-1) the distance between parts and their distances off the edge | 56
Table (4-2) C factor of bending value | 60
Table (4-3) the clearance between punch and die plate | 61
Table (4-4) the number of products | 62
Tables (4-6) Plates Material | 63