Abstract

In this thesis the concept of the axial engine was studied and a new design of the axial engine was proposed.

The whole engine was modeled in computer aided design (CAD) software (SolidWork).

The tribological problem of the main bearing (connecting rod bearing) which modeled previously was studied and all the calculations related to that bearing such as the load that can support and the pressure distribution through its lubricant film were modeled in CAE software (MATLAB).

It was concluded that this unique engine configuration includes many properties such as high power to the weight ratio and the ability to be variable compression ratio engine and also from MATLAB calculations that the optimum piston diameter for this model is 6.2cm.
التجربة

في هذا الاتجاه تتم دراسة مفهوم المحرك المجري وتم اقتراح نموذج جديد له. المحرك تم رسم أجزاء المحرك بواسطة أحد برامج التصميم بمساعدة الحاسوب (SOLIDWORKS).

تم دراسة المشاكل الترزيولوجية المتعلقة بالمحور الرئيسي للمحرك (محور عمود المرفق).

كما تم حساب الحمل الذي يمكن أن يتحمل هذا المحور وتوزيع الضغط خلال طبقة زيت المحمل وذلك باستخدام أحد البرامج المعمارية بمساعدة الحاسوب (MATLAB).

خلصت هذه الدراسة إلى أن هذا النوع من المحركات يمتاز ببعض الخصائص مثل ارتفاع نسبة العودة إلى الوزن، بمقارنة مع المحركات الأخرى. كما أنه قادر على تحمل محرك ذو نسبة انضغاط متعددة. كما تم التوصل باستخدام برنامج (MATLAB) إلى أن قطر المحول الأمثل لهذا النموذج هو 6.2cm.