بسم اللهِ الرَّحْمنِ الرَّحِيمِ

الْحَمْدُ للهِ رَبِّ الْعَالَمِينَ (2) الرَّحْمِنِ الرَّحِيمِ (3) مَالِكِ يَوْمِ الدِّينِ (4) إِيَّاكَ نَعْبُدُ وإِيَّاكَ نَسْتَعِينُ (5) إهدِنَا الصِّرَاطُ المُستَقِيمَ (6) صِرَاطُ الَّذِينَ أَنْعُمْتُ عَلَيهِمْ عَيرِ المَعْضُوبِ عَلَيهِمْ وَلاَ الضَّالِينَ (7)

سورة الفاتحة

Dedication

To my parent, brothers, sisters & my wife

Acknowledgment

My thanks firstly go to almighty God without whose help none of this could have been done.

My thanks to Dr. Grain Philip Adam in the beginning of this thesis

My true thanks to Ustaz. EL Mubarak M.Shamoug for effective contribution in success this thesis.

Last but not least gratitude's, & thanks to the evaluation committee members for their valuable suggestions and feedback and Sudan University of Science & Technology (College of Graduate Studies-Electrical Engineering Department).

CONTENTS

List of Figures	• • • • • • • • • • • • • • • • • • • •	Vii
List of Abbreviations		Viii
Abstract		xi
CHAPTER ONE		
LITERATURE REVIE	W	1
1.1 Introduction		2
1.2 Single-Phase Diode Re	ctifiers	7
1.3 Single-Phase Full-Wav	e Rectifiers	7
1.4 Single-phase boost con	verter	9
CHAPTER TWO		
BOOST CONERTER C	CIRCUITS	12
2.1Introduction		13
2.2 The objective		13
2.3. Performance Paramete	ers of Full-Wave Rectifiers	14
2.3.1 Voltage Relationship	s	14
2. 3.2 Current Relationship	os	15
2.3.3 Rectification Ratio		15
2. 3.4 Harmonics		16

2. 3.5 Design Considerations	16		
2.4 Analysis of the ideal boost converter circuit			
2.4.1 Inductor Current with Switch Closed			
2.4.2 Inductor Current with Switch Open			
2.4.3 Output Voltage Ripple with Switch Closed			
2.4.4 Expression for Average Inductor Current			
2.4.5 Continuous conduction	24		
2.4.6 Discontinuous Conduction	27		
CHAPTER THREE			
MODELING & RESULTS DISCUSSION	31		
3.1 System Configurations and Principle of Operation	32		
3.2 Modeling of the System Configurations			
3.2.1 Voltage Controller for dc Link	34		
3.2.2 Reference Inductor Current	35		
3.2.3 PWM Current Controller of PFC Converter	35		
3.2.4 The PFC Converter	35		
3.2.5 PI Speed Controller	36		
3.2.6 Reference Current Generation	36		

3.2.7 PWM Current Control	oller	•••••	38
3.2.8 Modeling of Back EMF using Rotor Position			
3.2.9 Modeling of PMBLDC Motor and Inverter			
3.2.10 Modeling of PMBLDC Motor and Load			
3.3 Results and Discussion			42
3.4 Performance during Speed Change			
3.5 Power Quality at ac Ma	nins		45
CHAPTER FOUR			
CONCLUSIONS & RECOMMENDATION			
4. 1Conclusions			50
4.2 Recommendation			51
References			52
Appendix	•••••		53

List of Figures

Fig.1.1 Bridge rectifiers	8
Fig.1.2 Voltage and current waveforms of the bridge rectifier	9
Fig.1.3 Step-up Converter Basic Circuit	10
Fig. 1.4 Switch closed state	11
Fig. 1.5 State: Switch Open	11
Fig.2.1The waveforms of inductor voltage and inductor current	20
Fig.2.2 Shows how the capacitor current and voltage vary over A cycle	22
Fig.2.3The maximum and the minimum inductor current can be Obtained	1 25
Fig.2.4The wave forms relevant to the inductor when the conductions are discontinuous	27
Fig.3.1 Schematic diagram of PFC converter fed VSI-PMBLDC motor diagram conditioning	rive for
Fig.3.2 Back EMF pattern and reference current generation	37
Fig.3.3 Functions of back EMF of PMBLDC motor	38
Fig.3.4 Flow chart	43
Fig.3.5 Simulated performance of PFC converter fed PMBLDC motor conditioning	for air
Fig.3.6 (a) Input current and its harmonic spectrum for PFC fed VSI-PM	MBLDC
motor at rated load and 50 radians per second	47
Fig.3.6 (b) Input current and its harmonic spectrum for rectifier feeling. PMBLDC motor at rated load and 50 radians per second	ed VSI-
F- 2-2	-

List of Abbreviations

 E_x The back electro magneto force of phase x

J Inertia of motor and load combination

L_s Self-inductance per phase

M Mutual inductance

P Number of poles

R Resistance of motor winding per phase

T_L The load torque

 V_{xn} the phase to neutral voltage of phase x

I_x is the current in phase a, b and c of the PMBLDC motor

 $\omega_{\rm r}$ Rotor speed, radian per second

 θ Rotor position

PWM pulse width modulation

PFC power factor correction

PI proportional integral

PMBLDC permanent magnet brush less direct current motor

CC-VSI current controlled voltage source inverter

EMF electro magneto force

RMS root mean square

DSP digital signal processor

ASD adjustable speed drives

IGBT insulated gate bipolar transistor

SMPSs switch mode power supplies

MOSFET metal oxide semi conductor field emitter transistor

BESSs battery energy storage systems

UPSs uninterrupted power supplies

GTO gate turn-off

SMRs switch-mode rectifiers

THD total harmonic distortion

UPS uninterruptible power supply

VAR voltage automatic regulation

PIV peak inverse voltage

AFs active filters

DF displacement factor

CF crest factor

PF power factor

مستخلص البحث:

البحث يناقش أداء محول تصحيح معامل القدرة الذي غذي به محرك التيار المستمر ذو المغنطيس الدائم الخالي من الفرش عبر مبدل مصدر الجهد والذي تم تحليله بالنسبة لعمليات السرعة المتغيرة لمكيف الهواء

وإعتبر مقوم القنطرة أحادي الطور بالإضافة إلى المحول المعزز عبارة عن محول تصحيح معامل القدرة الذي يحسن كمية التيار المسحوب من مصدر التيار المتردد.

وهذا المحول له القدرة في التغذية بجهد ثابت لمبدل مصدر الجهد الذي يغذي المحرك عندما يكون جهد المصدر متردد

وإن عملية تحكم الحلقة المغلقة بالنسبة لمحول تصحيح معامل القدرة ومبدل مصدر الجهد الذي غذي به المحرك يعبر عن أفضل أنواع التحكم، كما أنه سهل في حفظ الطاقة لنظام توزيع التيار المتردد لمحركات التيار المستمر (ذو المغناطيس الدائم خالي الفرش) الذي يدير محرك ضاغط الهواء. وتمت الدراسة للنظام المقترح ورسمت مخططات محاكاة أداءه.

Abstract:

In this thesis the performance of a power factor correction (**PFC**) converter fed voltage source inverter (**VSI**) supplying permanent magnet brushless direct current (**PMBLDC**) motor drive is analyzed for the variable speed operation of an air conditioner. And a single-phase diode bridge rectifier together with a boost converter is considered as a PFC converter, which improves the quality of the current drawn from the ac mains.

This converter is capable of supplying a constant dc link voltage to **VSI** fed **PMBLDC** motor, even when the voltage of the ac mains fluctuates.

The closed loop control of PFC converter and VSI fed **PMBLDC** motor provides a better control and facilitates energy conservation in ac distribution system, **PMBLDC** motor and the compressor of an air conditioner. The proposed system is modeled and its simulated performance are presented and discussed.