Abstract

During the last years, gas turbines have been widely used to produce electricity power. Gas turbine power plants mainly met the increase on load at peaking load. However, gas turbine power plants have the disadvantages of decreases in maximum power output in the summer daytime, which reduces the availability of gas turbines. One of the ways to avoid aforementioned disadvantage is making by cool inlet air of the gas turbine to increase the density, improve the gas turbine performance and augment maximum power output. In addition, one of the ways for cooling the inlet air is to make ice by driving electric compression refrigerators using during off-peak load. Store it in ice storage tank and use it for cooling the inlet air during the on-peak period. Thermal energy storage for combustion turbine inlet air cooling offers an economical solution when short duration capacity enhancements are required.

The objectives of this research is to investigate the effect of inlet air cooled by ice storage in Garri power plant station, expected results of the thermal energy storage for combustion turbine inlet air cooling system are included and economical profits.

A computer based calculation procedure using Excel worksheet was built, and applied to estimate the effect of the system on Garri power plant station. The calculation based on the plant data which is the combustion turbine model Alstom-GE PG-6551B, ambient air design is 35.7 DB/ 30% RH, and enthalpy 64.04 kJ/kg, inlet air design 15 DB/ 100% RH, and enthalpy 42.01 kJ/kg, air mass flow 518300 kg/hr @ 15, and peak cooling hour is 4 hours/day, 5 days/week. The results for the designing calculations were 20.6% increased in power generation or 6.1MW increased in capacity and 5.2% increased in efficiency. The project installation cost about 4103599 SDG and 2.1 years payback period of the system.
خلال السنوات الأخيرة، استخدمت التوربينات الغازية إنتاج الطاقة الكهربائية على نطاق واسع. تستخدم المحطات الغازية لمقابلة الزيادة في الحمل الكهربائي أثناء فترة الذروة. ومع ذلك، ظللت المحطات الغازية عبءاً إذا أنها لا تستطيع إنتاج الطاقة التصميمية لها أثناء نهار الصيف، مما يقلل من نوافر طاقتها. يعتبر تبريد الهواء الداخل للضاغط للمحطات الغازية إحدى الطرق لتجنب نقص الطاقة المذكورة وذلك بزيادة كثافة الهواء، مما يؤدي إلى تحسين الأداء وزيادة الطاقة المولدة من المحطات الغازية. ومن إحدى الطرق المتبعة لتبريد الهواء الداخل إلى التوربينات الغازية إنتاج الثلج بواسطة الدورات الإضغطاطية خارج فترة الذروة. يتم تخزين الثلج المنتج في مستودعات الثلوج واستخدامه لتبريد الهواء أثناء فترة الذروة. نظام تبريد الهواء الداخل إلى التوربينات الغازية بواسطة تخزين الثلج يعتبر حلاً اقتصادياً لزيادة الطاقة المولدة منها لفترات قصيرة.

يهدف هذا البحث هو دراسة تأثير تبريد الهواء الداخل إلي محطة قري الغازية بواسطة نظام تخزين الثلج، والنتائج المتوقعة لهذا النظام، مع تضمين الأرباح الاقتصادية.

تم إنشاء ورقة إكلل لإجراء العمليات الحسابية، وتطبيقها لتقدير تأثير النظام على محطة قري الغازية. تمت إجراء حسابات علي بيانات محطة قري الغازية التي بها توربين غازي من نوع Alstom-GE PG-6551B، عند درجة حرارة هواء الجو 35.7 ورطوبة نسبية 30% (ومحتوي حراري 64.04 KJ/kg ودرجة حرارة الهواء الداخل إلي الضاغط 15 ورطوبة 100% وموعد كثافة الهواء الداخل إلي الضاغط KJ/kg عند 15 وفترة الذروة 4 ساعات في اليوم و 5 أيام في الأسبوع. وكانت مخرجات البرنامج 20.6% زيادة في إنتاج الكهرباء أو 6.1 ميغاواط و 5.2% زيادة في الكفاءة. تكلفه المشروع حوالي 9,103,599 جنيه سوداني وتمت استعادة تكلفة المشروع خلال سنتين تقريباً.
Table of Contents

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>II</td>
</tr>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>مُستَخْلَص</td>
<td>IV</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>V</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>VIII</td>
</tr>
<tr>
<td>List of Figures</td>
<td>X</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XII</td>
</tr>
</tbody>
</table>

Chapter One: Introduction

1.1 Introduction 1
1.2 Project Objective 2
1.3 project methodology 2
1.4 Thesis outlines 2

Chapter Two: The Gas Turbine

2.1 An overview of gas turbines 4
2.2 Gas turbine performance 6
2.3 Gas turbine design considerations 8
2.4 Classifications of gas turbines 10
2.4.1 Frame type heavy-duty gas turbines 10
2.4.2 Aircraft-derivative Gas Turbines 11
2.4.3 Industrial type gas turbines 12
2.4.4 Small gas turbines 13
Capacity

4.4 Ice storage tank sizing
4.5 Gas turbine Power and Heat Rate
4.6 Revenues
4.7 The Excel Worksheet

Chapter Five: The Profitability of the TESTIAC at Garri Power Plant Gas Turbine

5.1 Estimation of the cooling load and Refrigeration

Capacity

5.2 Ice storage tank sizing
5.3 The Revenues and Power
5.4 Thermal energy storage inlet air cooling economics

Chapter Six: Conclusions and Recommendations

6.1 Conclusions
6.2 Recommendations

References

Appendices