Appendix B

Configuration files

GloMoSim Configuration File "config.in" string topology

```
# Glomosim is COPYRIGHTED software. It is freely available without fee for
# education, or research, or to non-profit agencies. No cost evaluation
# licenses are available for commercial users. By obtaining copies of this
# and other files that comprise GloMoSim, you, the Licensee, agree to abide
# by the following conditions and understandings with respect to the
# copyrighted software:
# 1.Permission to use, copy, and modify this software and its documentation
# for education, research, and non-profit purposes is hereby granted to
# Licensee, provided that the copyright notice, the original author's names
# and unit identification, and this permission notice appear on all such
# copies, and that no charge be made for such copies. Any entity desiring
# permission to incorporate this software into commercial products or to use
# it for commercial purposes should contact:
# Professor Rajive Bagrodia
# University of California, Los Angeles
# Department of Computer Science
# Box 951596
#3532 Boelter Hall
# Los Angeles, CA 90095-1596
```

rajive@cs.ucla.edu

- # 2.NO REPRESENTATIONS ARE MADE ABOUT THE SUITABILITY OF THE SOFTWARE FOR ANY
- # PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
- # 3. Neither the software developers, the Parallel Computing Lab, UCLA, or any
- # affiliate of the UC system shall be liable for any damages suffered by
- # Licensee from the use of this software.
- # \$Id: config.in,v 1.32 2001/04/12 18:35:00 jmartin Exp \$
- # Anything following a "#" is treated as a comment.

- # The following parameter represents the maximum simulation time. The numberd # portion can be followed by optional letters to modify the simulation time.
- # For example:
- # 100NS 100 nano-seconds
- # 100MS 100 milli-seconds
- # 100S 100 seconds
- # 100 100 seconds (default case)
- # 100M 100 minutes
- # 100H 100 hours
- # 100D 100 days

SIMULATION-TIME 15M

- # The following is a random number seed used to initialize part of the seed of
- # various randomly generated numbers in the simulation. This can be used to vary
- # the seed of the simulation to see the consistency of the results of the
- # simulation.

SEED 1

The following two parameters stand for the physical terrain in which the nodes # are being simulated. For example, the following represents an area of size 100 # meters by 100 meters. All range parameters are in terms of meters.

Terrain Area we are simulating.

TERRAIN-DIMENSIONS (2000, 2000)

The following parameter represents the number of nodes being simulated.

NUMBER-OF-NODES 12

- #The following parameter represents the node placement strategy.
- #- RANDOM: Nodes are placed randomly within the physical terrain.
- #- UNIFORM: Based on the number of nodes in the simulation, the physical
- # terrain is divided into a number of cells. Within each cell, a node is
- # placed randomly.
- #- GRID: Node placement starts at (0, 0) and are placed in grid format with
- # each node GRID-UNIT away from its neighbors. The number of nodes has to be
- # square of an integer.
- #- FILE: Position of nodes is read from NODE-PLACEMENT-FILE. On each line of
- # the file, the x and y position of a single node is separated by a space.
- # NODE-PLACEMENT FILE

NODE-PLACEMENT-FILE ./nodesstring.input

- # NODE-PLACEMENT GRID
- # GRID-UNIT 30
- # NODE-PLACEMENT RANDOM

NODE-PLACEMENT UNIFORM

- # The following represent parameters for mobility. If MOBILITY is set to NO,
- # than there is no movement of nodes in the model. For the RANDOM-

DRUNKEN model,

if a node is currently at position (x, y), it can possibly move to (x-1, y),

(x+1, y), (x, y-1), and (x, y+1); as long as the new position is within the # physical terrain. For random waypoint, a node randomly selects a destination # from the physical terrain. It moves in the direction of the destination in # a speed uniformly chosen between MOBILITY-WP-MIN-SPEED and # MOBILITY-WP-MAX-SPEED (meter/sec). After it reaches its # destination, the node stays there for MOBILITY-WP-PAUSE time period. # The MOBILITY-INTERVAL is used in some models that a node updates its position

every MOBILITY-INTERVAL time period. The MOBILITY-D-UPDATE is used that a node

updates its position based on the distance (in meters).

MOBILITY NO

Random Waypoint and its required parameters.

#MOBILITY RANDOM-WAYPOINT
#MOBILITY-WP-PAUSE 30S
#MOBILITY-WP-MIN-SPEED 0
#MOBILITY-WP-MAX-SPEED 10

#MOBILITY TRACE
#MOBILITY-TRACE-FILE ./mobility.in

#MOBILITY PATHLOSS-MATRIX

The following parameters are necessary for all the mobility models

MOBILITY-POSITION-GRANULARITY 0.5

- # Signals with powers below PROPAGATION-LIMIT (in dBm)
- # are not delivered. This value must be smaller than
- # RADIO-RX-SENSITIVITY + RADIO-ANTENNA-GAIN of any node
- # in the model. Otherwise, simulation results may be
- # incorrect. Lower value should make the simulation more
- # precise, but it also make the execution time longer.

PROPAGATION-LIMIT -111.0

- # PROPAGATION-PATHLOSS: pathloss model
- # FREE-SPACE:
- # Friss free space model.
- # (path loss exponent, sigma) = (2.0, 0.0)
- # TWO-RAY:
- # Two ray model. It uses free space path loss
- # (2.0, 0.0) for near sight and plane earth
- # path loss (4.0, 0.0) for far sight. The antenna
- # height is hard-coded in the model (1.5m).
- **# PATHLOSS-MATRIX:**

#PROPAGATION-PATHLOSS FREE-SPACE

PROPAGATION-PATHLOSS TWO-RAY

#PROPAGATION-PATHLOSS PATHLOSS-MATRIX

NOISE-FIGURE: noise figure

NOISE-FIGURE 10.0

TEMPARATURE: temparature of the environment (in K)

TEMPARATURE 290.0

- # RADIO-TYPE: radio model to transmit and receive packets
- # RADIO-ACCNOISE: standard radio model
- # RADIO-NONOISE: abstract radio model
- # (RADIO-NONOISE is compatible with the current version (2.1b5)
- # of ns-2 radio model)

#

RADIO-TYPE RADIO-ACCNOISE

#RADIO-TYPE RADIO-NONOISE

RADIO-FREQUENCY: frequency (in heltz) (Identifying variable for multiple radios)

RADIO-FREQUENCY 2.4e9

RADIO-BANDWIDTH: bandwidth (in bits per second)

RADIO-BANDWIDTH 2000000

- # RADIO-RX-TYPE: packet reception model
- **# SNR-BOUNDED:**
- # If the Signal to Noise Ratio (SNR) is more than
- # RADIO-RX-SNR-THRESHOLD (in dB), it receives the signal
- # without error. Otherwise the packet is dropped.
- # RADIO-RX-SNR-THRESHOLD needs to be specified.
- # BER-BASED:
- # It looks up Bit Error Rate (BER) in the SNR BER table
- # specified by BER-TABLE-FILE.

RADIO-RX-TYPE SNR-BOUNDED

RADIO-RX-SNR-THRESHOLD 10.0

#RADIO-RX-SNR-THRESHOLD 8.49583

#RADIO-RX-TYPE BER-BASED

#BER-TABLE-FILE ./ber_bpsk.in

RADIO-TX-POWER: radio transmition power (in dBm)

RADIO-TX-POWER 15.0

RADIO-ANTENNA-GAIN: antenna gain (in dB)

RADIO-ANTENNA-GAIN 0.0

RADIO-RX-SENSITIVITY: sensitivity of the radio (in dBm)

RADIO-RX-SENSITIVITY -91.0

RADIO-RX-THRESHOLD: Minimum power for received packet (in dBm)

RADIO-RX-THRESHOLD -81.0

MAC-PROTOCOL 802.11

#MAC-PROTOCOL CSMA

#MAC-PROTOCOL MACA

#MAC-PROTOCOL TSMA

#TSMA-MAX-NODE-DEGREE 8

#MAC-PROPAGATION-DELAY 1000NS

- # PROMISCUOUS-MODE defaults to YES and is necessary if nodes want
- # to overhear packets destined to the neighboring node.
- # Currently this option needs to be set to YES only for DSR is selected
- # as routing protocol. Setting it to "NO" may save a trivial amount

of time for other protocols.

#PROMISCUOUS-MODE NO

Currently the only choice.

NETWORK-PROTOCOL IP NETWORK-OUTPUT-QUEUE-SIZE-PER-PRIORITY 100

#RED-MIN-QUEUE-THRESHOLD 150

#RED-MAX-QUEUE-THRESHOLD 200

#RED-MAX-MARKING-PROBABILITY 0.1

#RED-QUEUE-WEIGHT .0001

#RED-TYPICAL-PACKET-TRANSMISSION-TIME 64000NS

#ROUTING-PROTOCOL BELLMANFORD

#ROUTING-PROTOCOL AODV

ROUTING-PROTOCOL DSR

#ROUTING-PROTOCOL LAR1

#ROUTING-PROTOCOL WRP

#ROUTING-PROTOCOL FISHEYE

#ROUTING-PROTOCOL ZRP

#ZONE-RADIUS 2

#ROUTING-PROTOCOL STATIC

#STATIC-ROUTE-FILE ROUTES.IN

- # The following is used to setup applications such as FTP and Telnet.
- # The file will need to contain parameters that will be use to
- # determine connections and other characteristics of the particular
- # application.

APP-CONFIG-FILE ./appstring.conf

- # The following parameters determine if you are interested in the statistics of
- # a a single or multiple layer. By specifying the following parameters as YES,

the simulation will provide you with statistics for that particular layer. All # the statistics are compiled together into a file called "GLOMO.STAT" that is # produced at the end of the simulation. If you need the statistics for a # particular node or particular protocol, it is easy to do the filtering. Every # single line in the file is of the following format:

Node: 9, Layer: RadioNoCapture, Total number of collisions is 0

APPLICATION-STATISTICS
TCP-STATISTICS
NO
UDP-STATISTICS
NO
ROUTING-STATISTICS
NO
NETWORK-LAYER-STATISTICS
NO
MAC-LAYER-STATISTICS
NO
RADIO-LAYER-STATISTICS
NO
CHANNEL-LAYER-STATISTICS
NO

GUI-OPTION: YES allows GloMoSim to communicate with the Java Gui Vis

Tool, NO does not. Note: YES increases simulation time.

NO

GUI-OPTION YES
GUI-RADIO YES
GUI-ROUTING YES

MOBILITY-STATISTICS

Configuration files GloMoSim Configuration File "config.in "ring topology

- # Glomosim is COPYRIGHTED software. It is freely available without fee for # education, or research, or to non-profit agencies. No cost evaluation # licenses are available for commercial users. By obtaining copies of this # and other files that comprise GloMoSim, you, the Licensee, agree to abide # by the following conditions and understandings with respect to the # copyrighted software:

 # 1.Permission to use, copy, and modify this software and its documentation # for education, research, and non-profit purposes is hereby granted to # Licensee, provided that the copyright notice, the original author's names # and unit identification, and this permission notice appear on all such # copies, and that no charge be made for such copies. Any entity desiring # permission to incorporate this software into commercial products or to use
- # Professor Rajive Bagrodia
- # University of California, Los Angeles

it for commercial purposes should contact:

- # Department of Computer Science
- # Box 951596
- #3532 Boelter Hall
- # Los Angeles, CA 90095-1596
- # rajive@cs.ucla.edu

- # 2.NO REPRESENTATIONS ARE MADE ABOUT THE SUITABILITY OF THE SOFTWARE FOR ANY
- # PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.
- # 3. Neither the software developers, the Parallel Computing Lab, UCLA, or any
- # affiliate of the UC system shall be liable for any damages suffered by
- # Licensee from the use of this software.
- # \$Id: config.in,v 1.32 2001/04/12 18:35:00 jmartin Exp \$
- # Anything following a "#" is treated as a comment.

- # The following parameter represents the maximum simulation time. The numberd # portion can be followed by optional letters to modify the simulation time.
- # For example:
- # 100NS 100 nano-seconds
- # 100MS 100 milli-seconds
- # 100S 100 seconds
- # 100 100 seconds (default case)
- # 100M 100 minutes
- # 100H 100 hours
- # 100D 100 days

SIMULATION-TIME 15M

- # The following is a random number seed used to initialize part of the seed of
- # various randomly generated numbers in the simulation. This can be used to vary
- # the seed of the simulation to see the consistency of the results of the
- # simulation.

SEED 1

The following two parameters stand for the physical terrain in which the nodes # are being simulated. For example, the following represents an area of size 100 # meters by 100 meters. All range parameters are in terms of meters.

Terrain Area we are simulating.

TERRAIN-DIMENSIONS (2000, 2000)

The following parameter represents the number of nodes being simulated.

NUMBER-OF-NODES 12

#The following parameter represents the node placement strategy.

#- RANDOM: Nodes are placed randomly within the physical terrain.

#- UNIFORM: Based on the number of nodes in the simulation, the physical

terrain is divided into a number of cells. Within each cell, a node is

placed randomly.

#- GRID: Node placement starts at (0, 0) and are placed in grid format with

each node GRID-UNIT away from its neighbors. The number of nodes has to be

square of an integer.

#- FILE: Position of nodes is read from NODE-PLACEMENT-FILE. On each line of

the file, the x and y position of a single node is separated by a space.

NODE-PLACEMENT FILE

NODE-PLACEMENT-FILE ./nodesring.input

NODE-PLACEMENT GRID

GRID-UNIT 30

NODE-PLACEMENT RANDOM

NODE-PLACEMENT UNIFORM

The following represent parameters for mobility. If MOBILITY is set to NO,

than there is no movement of nodes in the model. For the RANDOM-

DRUNKEN model,

if a node is currently at position (x, y), it can possibly move to (x-1, y),

(x+1, y), (x, y-1), and (x, y+1); as long as the new position is within the # physical terrain. For random waypoint, a node randomly selects a destination # from the physical terrain. It moves in the direction of the destination in # a speed uniformly chosen between MOBILITY-WP-MIN-SPEED and # MOBILITY-WP-MAX-SPEED (meter/sec). After it reaches its # destination, the node stays there for MOBILITY-WP-PAUSE time period. # The MOBILITY-INTERVAL is used in some models that a node updates its position

every MOBILITY-INTERVAL time period. The MOBILITY-D-UPDATE is used that a node

updates its position based on the distance (in meters).

MOBILITY NO

Random Waypoint and its required parameters.

#MOBILITY RANDOM-WAYPOINT
#MOBILITY-WP-PAUSE 30S
#MOBILITY-WP-MIN-SPEED 0
#MOBILITY-WP-MAX-SPEED 10

#MOBILITY TRACE
#MOBILITY-TRACE-FILE ./mobility.in

#MOBILITY PATHLOSS-MATRIX

The following parameters are necessary for all the mobility models

MOBILITY-POSITION-GRANULARITY 0.5

```
# PROPAGATION-LIMIT:
# Signals with powers below PROPAGATION-LIMIT (in dBm)
# are not delivered. This value must be smaller than
# RADIO-RX-SENSITIVITY + RADIO-ANTENNA-GAIN of any node
# in the model. Otherwise, simulation results may be
# incorrect. Lower value should make the simulation more
# precise, but it also make the execution time longer.
PROPAGATION-LIMIT
                       -111.0
# PROPAGATION-PATHLOSS: pathloss model
# FREE-SPACE:
   Friss free space model.
   (path loss exponent, sigma) = (2.0, 0.0)
# TWO-RAY:
  Two ray model. It uses free space path loss
   (2.0, 0.0) for near sight and plane earth
   path loss (4.0, 0.0) for far sight. The antenna
   height is hard-coded in the model (1.5m).
# PATHLOSS-MATRIX:
#PROPAGATION-PATHLOSS FREE-SPACE
PROPAGATION-PATHLOSS TWO-RAY
```

```
# NOISE-FIGURE: noise figure
NOISE-FIGURE 10.0
```

#

#

#

#

#

TEMPARATURE: temparature of the environment (in K)

#PROPAGATION-PATHLOSS PATHLOSS-MATRIX

TEMPARATURE 290.0

- # RADIO-TYPE: radio model to transmit and receive packets
- # RADIO-ACCNOISE: standard radio model
- # RADIO-NONOISE: abstract radio model
- # (RADIO-NONOISE is compatible with the current version (2.1b5)
- # of ns-2 radio model)

#

RADIO-TYPE RADIO-ACCNOISE

#RADIO-TYPE RADIO-NONOISE

RADIO-FREQUENCY: frequency (in heltz) (Identifying variable for multiple radios)

RADIO-FREQUENCY 2.4e9

RADIO-BANDWIDTH: bandwidth (in bits per second)

RADIO-BANDWIDTH 2000000

- # RADIO-RX-TYPE: packet reception model
- **# SNR-BOUNDED:**
- # If the Signal to Noise Ratio (SNR) is more than
- # RADIO-RX-SNR-THRESHOLD (in dB), it receives the signal
- # without error. Otherwise the packet is dropped.
- # RADIO-RX-SNR-THRESHOLD needs to be specified.
- # BER-BASED:
- # It looks up Bit Error Rate (BER) in the SNR BER table
- # specified by BER-TABLE-FILE.

RADIO-RX-TYPE SNR-BOUNDED

RADIO-RX-SNR-THRESHOLD 10.0

#RADIO-RX-SNR-THRESHOLD 8.49583

#RADIO-RX-TYPE BER-BASED

#BER-TABLE-FILE ./ber_bpsk.in

RADIO-TX-POWER: radio transmition power (in dBm)

RADIO-TX-POWER 15.0

RADIO-ANTENNA-GAIN: antenna gain (in dB)

RADIO-ANTENNA-GAIN 0.0

RADIO-RX-SENSITIVITY: sensitivity of the radio (in dBm)

RADIO-RX-SENSITIVITY -91.0

RADIO-RX-THRESHOLD: Minimum power for received packet (in dBm)

RADIO-RX-THRESHOLD -81.0

MAC-PROTOCOL 802.11

#MAC-PROTOCOL CSMA

#MAC-PROTOCOL MACA

#MAC-PROTOCOL TSMA

#TSMA-MAX-NODE-DEGREE 8

#MAC-PROPAGATION-DELAY 1000NS

- # PROMISCUOUS-MODE defaults to YES and is necessary if nodes want
- # to overhear packets destined to the neighboring node.
- # Currently this option needs to be set to YES only for DSR is selected
- # as routing protocol. Setting it to "NO" may save a trivial amount

of time for other protocols.

#PROMISCUOUS-MODE NO

Currently the only choice.

NETWORK-PROTOCOL IP NETWORK-OUTPUT-QUEUE-SIZE-PER-PRIORITY 100

#RED-MIN-QUEUE-THRESHOLD 150

#RED-MAX-QUEUE-THRESHOLD 200

#RED-MAX-MARKING-PROBABILITY 0.1

#RED-QUEUE-WEIGHT .0001

#RED-TYPICAL-PACKET-TRANSMISSION-TIME 64000NS

#ROUTING-PROTOCOL BELLMANFORD

#ROUTING-PROTOCOL AODV

ROUTING-PROTOCOL DSR

#ROUTING-PROTOCOL LAR1

#ROUTING-PROTOCOL WRP

#ROUTING-PROTOCOL FISHEYE

#ROUTING-PROTOCOL ZRP

#ZONE-RADIUS 2

#ROUTING-PROTOCOL STATIC

#STATIC-ROUTE-FILE ROUTES.IN

- # The following is used to setup applications such as FTP and Telnet.
- # The file will need to contain parameters that will be use to
- # determine connections and other characteristics of the particular
- # application.

APP-CONFIG-FILE ./appring.conf

- # The following parameters determine if you are interested in the statistics of
- # a a single or multiple layer. By specifying the following parameters as YES,

the simulation will provide you with statistics for that particular layer. All
the statistics are compiled together into a file called "GLOMO.STAT" that is
produced at the end of the simulation. If you need the statistics for a
particular node or particular protocol, it is easy to do the filtering. Every
single line in the file is of the following format:

Node: 9, Layer: RadioNoCapture, Total number of collisions is 0

APPLICATION-STATISTICS YES
TCP-STATISTICS NO
UDP-STATISTICS NO
ROUTING-STATISTICS NO
NETWORK-LAYER-STATISTICS NO
MAC-LAYER-STATISTICS NO

RADIO-LAYER-STATISTICS NO
CHANNEL-LAYER-STATISTICS NO

CHARTLE EATER STATISTICS NO

MOBILITY-STATISTICS NO

GUI-OPTION: YES allows GloMoSim to communicate with the Java Gui Vis
Tool, NO does not. Note: YES increases simulation time.

GUI-OPTION YES

GUI-RADIO YES

GUI-ROUTING YES

Glomosim Inputs files

nodessting.input

String topology

- 0 (200 200)
- 1 (200 400)
- 2 (200 600)
- 3 (200 800)
- 4 (200 1000)
- 5 (200 1200)
- 6 (200 1400)
- 7 (200 1600)
- 8 (200 1800)
- 10 (200 2000)
- 11 (200 2200)

nodering.input

Ring Topology

- 0 (200 200)
- 1 (200 400)
- 2 (200 600)
- 3 (200 800)
- 4 (400 800)
- 5 (600 800)
- 6 (800 800)
- 7 (800 600)

```
8 (800 400)
9 (800 200)
10 (600 200)
11 (400 200)
                              Appstring.input
FTP/GENERIC 0 1 56 1460 0S 0S
FTP/GENERIC 1 2 56 1460 0S 0S
FTP/GENERIC 2 3 56 1460 0S 0S
FTP/GENERIC 3 4 56 1460 0S 0S
FTP/GENERIC 4 5 56 1460 0S 0S
FTP/GENERIC 5 6 56 1460 0S 0S
FTP/GENERIC 6 7 56 1460 0S 0S
FTP/GENERIC 7 8 56 1460 0S 0S
FTP/GENERIC 8 9 56 1460 0S 0S
FTP/GENERIC 9 10 56 1460 0S 0S
FTP/GENERIC 10 11 56 1460 0S 0S
#2. FTP/GENERIC
# FTP/GENERIC does not use toplib to simulate file transfer. Instead,
# the client simply sends the data items to the server without the server
# sending any control information back to the client. In order to use
# FTP/GENERIC, the following format is needed:
#
   FTP/GENERIC <src> <dest> <items to send> <item size> <start time> <end
time>
#
# where
```

```
# <src> is the client node.
#
    <dest> is the server node.
    <items to send> is how many application layer items to send.
#
#
    <item size> is size of each application layer item.
#
    <start time> is when to start FTP/GENERIC during the simulation.
    <end time> is when to terminate FTP/GENERIC during the simulation.
#
# If <items to send> is set to 0, FTP/GENERIC will run until the specified
# <end time> or until the end of the simuation, which ever comes first.
# If <end time> is set to 0, FTP/GENERIC will run until all <items to send>
# is transmitted or until the end of simulation, which ever comes first.
# If <items to send> and <end time> are both greater than 0, FTP/GENERIC will
# will run until either <items to send> is done, <end time> is reached, or
# the simulation ends, which ever comes first.
#
```

B-21