
 A-1

Appendix A
GloMoSim SIMULATOR FOR WIRELESS NETWORKS

 PARSEC

PARSEC (for Parallel Simulation Environment for Complex systems) is a

C-based simulation language developed by the Parallel Computing Laboratory at

UCLA, for sequential and parallel execution of discrete-event simulation models.

It can also be sued as a parallel programming language. PARSEC runs on several

platforms, including most recent UNIX variants as well as Windows.

PARSEC adopts the process interaction approach to discrete-event

simulation. An object (also referred to as a physical process) or set of objects in

the physical system is represented by a logical process. Interactions among

physical processes (events) are modeled by time-stamped message exchanges

among the corresponding logical processes. One of the important distinguishing

features of PARSEC is its ability to execute a discrete-event simulation model

using several different asynchronous parallel simulation protocols on a variety of

parallel architectures. PARSEC is designed to cleanly separate the description of a

simulation model from the underlying simulation protocol, sequential or parallel,

used to execute it. Thus, with few modifications, a PARSEC program

may be executed using the traditional sequential (Global Event List)

simulation protocol or one of many parallel optimistic or conservative protocols.

In addition, PARSEC provides powerful message receiving constructs that result

in shorter and more natural simulation programs.

 GloMoSim Library
GloMoSim is a scalable simulation library for wireless network systems

built using the PARSEC simulation environment . Table 1 lists the GloMoSim

models currently available at each of the major layers. GloMoSim also supports

two different node mobility models. Nodes can move according to a model that is

 A-2

generally referred to as the “random waypoint” model . A node chooses a random

destination within the simulated terrain and moves to that location based on the

speed specified in the configuration file. After reaching its destination, the node

pauses for a duration that is also specified in the configuration file. The

other mobility model in GloMoSim is referred to as the “random drunken” model.

A node periodically moves to a position chosen randomly from its immediate

neighboring positions. The frequency of the change in node position is based on a

parameter specified in the configuration file.

In contrast to existing network simulators such as OPNET and NS,

GloMoSim has been designed and built with the primary goal of simulating very

large network models that can scale upto a million nodes using parallel simulation

to significantly reduce execution times of the simulation model. In the next sub-

sections, we explore the techniques of node and layer aggregation that are used to

achieve this scalability.

As most network systems adopt a layered architecture, GloMoSim is being

designed using a layered approach similar to the OSI seven layer network

architecture. Simple APIs are defined between different simulation layers.

This allows the rapid integration of models developed at different layers by

different people. Actual operational

code can also be easily integrated into GloMoSim with this layered design,

which is ideal for a simulation model as

 A-3

it has already been validated in real life and no abstraction is introduced.

For example, a TCP model was implemented in GloMoSim by extracting actual

code from the FreeBSD operating system. This also reduces the amount of coding

required to develop the model. The simple APIs that are currently implemented in

GloMoSim are also presented in a following sub-section.

 Node Aggregation
In PARSEC, a simple approach to designing a network simulation model is

to create each network node as an entity. Although this approach is easy to

understand, it has scalability problems. If an entity has to be instantiated

for each node, the memory requirements would increase dramatically for a

model with large number of nodes because each entity requires additional memory

to work as an independent process. The performance of the simulation would also

degrade due to context switching overheads among many entities. Hence,

initializing each node as a separate entity inherently limits the scalability and

performance of the simulation.

To circumvent these problems, node aggregation was introduced into

GloMoSim. With node aggregation, a single entity can simulate several network

nodes in the system. A separate data structure representing the complete state of

each node is maintained within the entity. When the simulation code for a

particular node is being executed

it does not have access to the data structures of other nodes in the

simulation. The node aggregation technique implies that the number of nodes in

the system can be increased while maintaining the same number of entities in

the simulation. In fact, the only requirement is that we need only as many

entities as the number of processors on which the simulation is being run. Hence, a

sequential simulation needs only one entity in the simulation. With the node

aggregation technique, the memory and context switching problems are

eliminated. In GloMoSim, each entity represents a geographical area of the

simulation. Hence, the network nodes that a

 A-4

particular entity represents are determined by the physical position of the

nodes. For example, suppose we specify a geographical area of 100 by 100 meters

in the simulation and set the number of x and y partitions to be 2 for a

particular simulation. There would be four partitions in the simulation,

where each partition is represented by a single entity. Fig. 2 shows how the terrain

would be divided into the four partitions. One particular partition in the simulation

would encompass the area represented by the coordinates (0, 0), (49, 0), (0, 49),

and (49, 49).

In a basic usage of GloMoSim, each entity represents a regular rectangular

region (partition). Thus, a partition can have at most eight neighboring partitions.

When a network node sends out a message, the message has to be sent to at most

the eight neighboring entities in the simulation. This is much simpler than the

simple design mentioned previously. If each entity represents a single network

node, broadcasting a message from a node is very difficult. The first option to

implementing broadcasting is that each entity constantly keeps track of the other

entities that are within its power range. This option is difficult since the network

topology would constantly change as mobility is introduced into the simulation.

The second option is that when a node sends a message, it would be sent to all the

other entities in the simulation. The receiving entity will accept the message as

long as it is in the power range of the sender. This becomes highly inefficient as

the number of nodes in the simulation increases.

 A-5

Hence a simple message transmission becomes very complicated when

node aggregation is not used. With node aggregation, each entity can examine

which node can receive a packet within the entity and send messages only to

the neighboring entities where the packet can be reachable.

 Layer Aggregation
Since GloMoSim is being built using a layered approach, the ability to rapidly

integrate models developed at different layers by different people is very

important. Hence, the simple approach would be that each layer in the simulation

would be represented by a different Parsec entity. Some of the problems of using

an entity to represent a single node reappear. As the number of layers in the

simulation increases, the number of entities in the simulation also increases. This

leads to scalability and performance problems in the simulation. This is not as

dramatic as the

case where an entity represents a single node since there are relatively few layers

in the simulation. Aggregating all the layers into a single entity is still a

compelling argument for other reasons.

There are times in a simulation when different layers need to access certain

common variables. For example, the upper layers of the simulation need to use the

CPU when they are executing any instructions. Since CPU is a shared resource

among these layers, a layer has to make sure that the CPU is free before executing

any instructions.

Hence the upper layers need to have access to common variables which will

provide information about the state of

the CPU. If these layers are kept as different entities in the simulation there is no

elegant method for accessing shared variables. Global variables cannot be used in

such a situation as they cause problems with concurrent access during parallel

executions.

 A-6

If the layers are kept as different entities, each layer also has to explicitly keep

track of the entity name values for the upper and lower layers. These entity name

values are needed for message passing among the various layers.

For the parallel conservative runtime, each entity also needs to specify the source

and destination set of communicating entities as well as lookahead values.

Specifying lookahead for an entity can be a very cumbersome and difficult task.

This creates additional work for the protocol developer who is basically interested

in modeling aparticular network protocol.

For these reasons, we decided to integrate the various GloMoSim layers into a

single entity. Each entity encompasses all the layers of a simulation. Each layer is

now implemented as three function calls by the protocol modeler. The developer

has to provide an initialization function that will be called for each layer of each

node at the

beginning of the simulation. The next function call provided by the developer is

automatically invoked when a particular layer of a particular node receives an

incoming packet/event. Based on the contents of the message, the appropriate

instructions will be executed. Function calls are also provided for a layer to send

messages to its lower or upper layer in the simulation. At the end of the

simulation, another developer provided function call is invoked.

This can be used to collect any relevant statistics for that layer.

It might appear that the addition of node and layer aggregation would cause great

difficulty for protocol developers who are only interested in developing the

simulation model for their particular model. But this is not the case as we have

created several layers of abstractions in GloMoSim. For the most part, the

developer writes pure C code. The presence of the PARSEC runtime and

interactions with the runtime are completely hidden from the user.

In the experience of our own group, modelers prefer to work within our structured

environment of node aggregation rather than the alternative.

 A-7

4.3 Simple APIs
Simple APIs between every two neighboring models on protocol stacks is

predefined to support their composition. These APIs specify parameter exchanges

and services between neighboring layers. The simplicity of the APIs allows

developers to model their protocols rapidly in an independent fashion. The APIs

currently defined

in GloMoSim are presented:

Channel Layer – Radio Layer APIs:

Data packet from Channel to Radio:

Fields: payload, packetSize

These fields refer to the actual data and size of data being received. They have

similar meanings when used

subsequently for the reception or transmission of packets.

Data packet from Radio to Channel:

Fields: payload, packetSize

Radio Layer – MAC Layer APIs:

Data packet from Radio to MAC:

Fields: payload, packetSize

Data packet from MAC to Radio:

Fields: payload, packetSize

Request Channel Status from MAC to Radio:

Fields: (none)

This message is used by the MAC layer to request information about the current

channel status.

Report Channel Status from Radio to MAC:

Fields: status, flag

This message is used by the radio layer to return the current status of the channel

as well as the method by

 A-8

which the information is being reported (passively or actively based on the request

message sent by the

MAC layer).

MAC Layer – Network Layer APIs:

Data packet from MAC to Network:

Fields: payload, packetSize, sourceId

The sourceId refers to the previous hop from which the packet arrived.

Data packet from Network to MAC:

Fields: payload, packetSize, destId

The destId refers to the next hop where the packet will travel.

Network Layer – Transport Layer APIs:

Data packet from Transport to Network:

Fields: payload, packetSize

The IP header should be a part of the packet that is sent from the transport to the

network layer.

Data packet from Network to Transport:

Fields: payload, packetSize, sourceId

The sourceId refers to the original source where the packet originated. For the

packet sent from the network

to the transport layer, the IP header is no longer a part of the packet.

Network Layer – Application Layer APIs:

Data packet from Network to Application:

Fields: payload, packetSize, sourceId

Data packet from Application to Network:

Fields: payload, packetSize

These APIs, which are similar to the APIs used between the network and transport

layers, are used for

communication between routing daemons (such as OSPF) that are running at the

application layer and need

 A-9

to communicate directly with the network layer.

UDP Transport Layer – Application Layer APIs:

Data packet from UDP to Application:

Fields: payload, packetSize, sourceAddr, sourcePort, destAddr, destPort

Data packet from Application to UDP:

Fields: payload, packetSize, sourceAddr, sourcePort, destAddr, destPort

In these APIs, the sourceAddr and sourcePort refer to the source address and port

number where the packet

originates. The destAddr and destPort refer to the destination address and port

number where the packet is

going.

TCP Transport Layer – Application Layer APIs:

Open Listen Socket from Application to TCP:

Fields: appType, localPort

This API is used by an application type (such as telnet server) to open a listen

connection on the given port

number.

Connection Open from Application to TCP:

Fields: appType, localPort, remoteAddr, remotePort

This API is used by an application to inform TCP to try to setup a connection from

the given local port

number to the given remote address and port number.

Data packet to send from Application to TCP:

Fields: payload, packetSize, connectionId

This API is used by an application to send a packet using on the given

connectionId.

Connection Close from Application to TCP:

Fields: connectionId

This API is used by an application to close a particular connection.

 A-10

Listen Socket Open Result from TCP to Application:

Fields: localPort, connectionId

This API is used by TCP to inform the application about the result of trying to

open a listen connection.

Connection Open Result from TCP to Application:

Fields: type, localPort, remoteAddr, remotePort, connectionId

This API is used by TCP to inform the application about any connection that has

been opened to a remote

address and port number and the associated connection id. The connection type

can be passive or active.

Data Sent Result from TCP to Application:

Fields: connectionId, packetSize

This API is used by TCP to inform the application about the number of bytes that

could be sent due to the

data sent request generated by the application for TCP.

Data Received from TCP to Application:

Fields: connectionId, payload, packetSize

This API is used by TCP to inform the application about any data that has been

received on a connection.

Connection Close Result from TCP to Application:

Fields: type, connectionId

This API is used by TCP to inform the application about the connection getting

closed as well as the type

of connection close (passive or active).

5. Scalability of GloMoSim

The node aggregation technique gives significant benefits to the simulation

performance. As each entity needs

to examine packet receptions only for the nodes located in the region it is

simulating, using many partitions reduce

 A-11

the total search space for packet delivery. In Fig. 2, for instance, if a packet sent by

a node located in Partition (0, 0)

cannot reach the border of the partition, no message needs to be sent to the other

partitions. Therefore, the other

partitions do not have to examine the reception of the packet, which reduce the

region to be examined for the packet

by a factor of four compared to using single partition. Fig. 3 shows the impact of

multiple partitions for the models

with 2500 and 5000 wireless nodes. Both simulation models consist of wireless

nodes running CSMA at the MAC

layer, each of which is randomly placed in 2000 x 2000m free space region. As

seen in Fig. 3, the executions for

both models become faster as the number of partitions increases. The effect of

multiple partitions is larger for the

model with 5000 nodes as the reduction in the execution time is related to the

number of wireless nodes to be

examined for each radio transmission.

 A-12

GloMoSim is aimed at simulating models that may contain as many as 100,000

mobile nodes with a

reasonable execution time. GloMoSim has already been used to simulate 10,000

nodes up to the MAC layer using parallel execution of the model on shared

memory architectures. Fig. 4 indicates parallel performance of

GloMoSim on a Sun SPARCserver 1000. Speedup rates are calculated based on

the sequential execution of each model. The same configuration as the

experiments on multiple partitions is used with different number of wireless

nodes. Twelve partitions are used for all the executions to balance the workload of

each processor. As shown in Fig. 4, GloMoSim achieved better parallel

performance for models with higher number of wireless nodes because more

activities occur concurrently in those models, which increase the parallelism of

models.

Users, especially those who need to simulate large-scale models can benefit from

this parallel simulation capability of GloMoSim. Fig. 5 shows increases of

execution times against the number of mobile nodes in the model. With the same

number of processors, the execution time increases dramatically as the number of

mobile nodes in the model increases. However, the execution time with 6

processors for the 10000 node model is shorter than the sequential execution for

the 5000 node model. This implies that the user can run the simulation for a model

consisting of twice the number of mobile node in the same amount of time with 6

processors.

Parallel simulation requires synchronization of simulation clock among multiple

processors. PARSEC simulation environment provides four variations of

conservative protocols and an optimistic protocol for the synchronization. The

current GloMoSim kernel has parallel execution directives for conservative

protocols and will be capable of executing models using optimistic protocols in

future. The experiments done in this section used the null message protocol, which

is one of the most basic conservative protocols widely used for many applications.

