ACKNOWLEDGMENT

I would like to express my sincere gratitude to **Dr. Ashraf GasimElsid Abdallah**, for being the guiding force behind the research necessary for the completion of this dissertation. Without his guidance, encouragement, support, ideas, and scientific enlightenment this work would not have been possible.

My great appreciation goes also to **Center for Engineering & Technical Studies (CETS)** for their continuous support, and guidance for the work done in this thesis.

I am indebted to my Father and my small family for all their encouragement and support throughout my academic career, no words can express my gratitude to them. I therefore dedicate my work to them and also to my children Aseel, Noam and little Ali.

ABSTRACT

Ad Hoc Network is a multihop wireless network where all nodes cooperatively maintain network connectivity without a centralized infrastructure. The nodes participating in Ad Hoc Network operate both as hosts and as routers. The success of TCP in wired networks motivates its extension to wireless network.

In Ad Hoc network the standard TCP faces server performance degradation over multihop networks given the noise nature of wireless media as well as unstable connectivity conditions in place. This research presents a study for a modified TCP protocol in order to enhance the behavior of the protocol in Ad-hoc wireless networks.

Proposed two modification of the standard TCP by adjusting TCP's behavior during slow start and congestion avoidance phase's .The throughput of the proposed protocols has increased over the throughput of the standard TCP protocol. Glomosim simulator was used, which is one of known simulators for Ad-hoc wireless networks.

ملخص الرسالة

في مجال شبكات الحاسب تعرف الشبكات اللاسلكية ذاتية التنظيم بأنها عبارة عن شبكات مؤقتة تستخدم لربط عدة مستخدمين دون الحاجة إلى تحكم مركزي فكل حاسب بالشبكة يكون له القدرة على العمل كمضيف ومحدد مسار كما يكون عنده الاستعداد لتمرير الرسائل الأخرى.

ويعد بروتوكول نقل البيانات TCP من أهم البروتوكولات المستخدمة حاليا في الشبكات السلكية ونظرا للكفاءة العالية لهذا البروتوكول فإن العديد من الأبحاث تهتم بتحسين آداء هذا البروتوكول للعمل على الشبكات اللاسلكية ذاتية التنظيم

ولقد تم تقديم مقترحين في هذه الرسالة لتحسين آداء بروتوكول نقل البيانات TCP للعمل على الشبكات اللاسلكية ذاتية التنظيم وخاصة تحسين عامل النفاذية Throughput وتم التأكد من الفاعلية من خلال المحاكي Glomosim الذي أعد خصيصا لمحاكاة الشبكات اللاسلكية ذاتية التنظيم. وتم اختبار النتائج باستخدام بروتوكولين من أشهر بروتوكولات تحديد المسار وهما

Dynamic Source Routing (DSR) .\

Ad Hoc on-demand Distance vector (AODV) . Y

وقد أثبتت الدراسة أن آداء ابروتوكول نقل البيانات TCP قد تحسن تحسنا ملحوظا نتيجة التعديلين المقترحين في آداء البروتوكول، مما يسهم في دفع كفاءة عمل البروتوكول على الشبكات اللاسلكية ذاتية التنظيم.

Contents

Acknowledgement	I
Abstract	II
Contents	IV
List of Tables	VII
List of Figures	VIII
List of Abbreviations and Acronyms	IX
Chapter 1. Introduction	1
1.1 Ad Hoc Networks Overview:	1
1.2 TCP Introduction and wireless Challenges.	1
1.3 Problem Definition.	3
1.4 Thesis Objective	4
1.5 Thesis Methodology	5
1.6 Expected results	5
1.7 Thesis Layout	5
Chapter 2. Transmission Control Protocol	7
2.1 Introduction	7
2.2 TCP Mechanisms	7
2.2.1 Connection Setup	8
2.2.2 Flow and Congestion Control	10
2.3 Congestion Control Mechanisms	12
2.3.1 Slow Start and Congestion Avoidance	12
2.3.2 Equation-Based Congestion Control	14
Chapter 3. Ad Hoc Networks and TCP Challenges	16
3.1 Characteristics of Ad Hoc Networks	16
3.1.1 Dynamic Topologies	16

3.1.2 Bandwidth-constrained and variable capacity links	16
3.1.3 Energy-constrained operation	16
3.1.4 Limited Physical security	16
3.2 Applications of Ad hoc Networks	17
3.2.1 Military Applications	17
3.2.2 Virtual Navigation	19
3.2.3 Crisis-management applications	19
3.3 Ad Hoc Protocol Stack	19
3.3.1 Internetworking	21
3.4 Proactive, Reactive and Hybrid Routing Protocols	23
3.4.1 Ad hoc On-Demand Distance Vector (AODV)	24
3.4.2 Dynamic Source Routing (DSR)	27
3.5 TCP Challenges in AD HOC Networks	29
3.5.1 Lossy channels	30
3.5.2 Hidden and Exposed stations	31
3.5.3 Path asymmetry	33
3.5.4 Network partition	35
3.5.5 Routing failures	36
3.5.6 Power constraints	37
3.5.7 Misinterpretation of packet loss	37
3.6 Misinterpretation of congestion window	38
3.7 The use of sliding-window-based transmission	38
Chapter 4. Simulation Environments	40
4.1 Introduction	40
4.2 OPNET Simulator	40
4.3 NS2 Simulator	41

4.4 QualNet simulator	41
4.5 Glomosim simulator	42
4.6 Choice of simulator	43
Chapter 5. Methodology & Experimental procedure	44
5.1 Introduction	44
5.2 Simulation Setup	44
5.3 Experimental Configuration and Parameters	44
Chapter 6. Simulation Results and Discussion	47
6.1 Introduction	47
6.2 Experiment 1:Slow start modification (Slow Start TCP)	47
6.2.1 Objective	47
6.3 Experiment 2:Congestion avoidance modification (SCA TCP)	49
6.3.1 Objective	49
6.4 Simulation Results	52
6.5 TCP enhancement using Optimal Window Size	55
Chapter 7.Conclusion and future work	58
7.1 Conclusion	58
7.2 Recommendation and future work.	58
References	59
Appendix A	A-1
Appendix B	B-1
Appendix C	C-1
Appendix D	D-1

List of Tables

5.1	Common TCP Parameters	47
6.1	Default throughput and after slow start modification	53
6.2	Default throughput and after congestion avoidance modification	55
6.3	Default throughput and after optimal window modification	58

List of Figures

2.1	TCP three-way handshake	9
2.2	TCP congestion window evolution	13
3.1	The OSI model, TCP/IP suite and MANET protocol stack	21
3.2	The protocol stacks used by mobile nodes, gateways and Internet nodes	22
3.3	The ad hoc Family Tree	23
3.4	Hidden terminal problem	32
3.5	Exposed terminal problem	33
3.6	Network partition scenario	36
5.1	Simulation model	54
6.1	Default throughput and after slow start modification	55
6.2	Default throughput and after congestion avoidance modification	55
6.3	Ad hoc model of h hops	57
6.4	Default throughput and after optimal window modification	58

List of Abbreviations, Acronyms and Symbols

AP Access Point ACK Acknowledgment

AODV Ad-hoc On-demand Distributed Vector

AQM Active Queue Management ARQ Automatic Repeat Request

ATCP Ad hoc TCP
BER Bit Error Rate
CF Contention-Free

CFP Contention-Free Period CP Contention Period

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CTS Clear to Send

CW Contention Window

CWR Congestion Window Reduced (CWR)

CWND Congestion Window

DAA Dynamic Adaptive Acknowledgment
DAAP Dynamic Adaptive Acknowledgment plus

DCF Distributed Coordination Function

DNS Domain Name Server
DS Distributed System

DSR Dynamic Source Routing

ECN Explicit Congestion Notification ELFN Explicit Link Failure Notification

FCS Frame Check Sequences FEC Forward Error correction

FEDM Fuzzy-based Error Detection Mechanism

FILO First In Last Out

FTP File Transfer Protocol HMM Hidden Markov Model

HTTP HyperText Transfer Protocol

ICMP Internet Control Message Protocol IDD Inter-packet Delay Difference IED Improved Error Detection

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IFS Interframe Space IP Internet Protocol

ISN Initial Sequence Number LAN Local Area Network

LDA Large Delayed Acknowledgment

LRED Link RED

MAC Medium Access Control
MANET Mobile Ad hoc Networks
MSS Maximum Segment Size

NDUP Number of duplicate ACKs (threshold)

NH Number of Hops

OSI Open Systems Interconnect

PC Point Coordinator

PCF Point Coordination Function

PER Packet Error Rate
PLR Packet Loss Rate

POR Packet Out-of-order delivery Ratio

RED Random Early Detection RFC Request For Comments RFN Route Failure Notification

RR RTT increase Rate

RRN Route Re-establishment Notification

RREP Route Reply
RREQ Route Request
PTO Retrongmit Tin

RTO Retransmit Timeout
RTS Request to Send
RTT Round Trip Time

RTTVAR Round Trip Time Variation

RWIN Receiver Window

SANET Static Ad hoc Networks
SMTP Mail Transfer Protocol
SRTT Smoothed Round Trip Time
STT Short Term Throughput
SWS Silly Window Syndrome
TCP Transport Control Protocol

TTL Time to Live WI-FI Wireless Fidelity

WLAN Wireless Local Area Network

WWW World Wide Web

r Transmit rate in Bytes/second

s Packet Size in bytes

R round-trip time in seconds

P the loss event rate

tRTO TCP retransmission timeout value in seconds

b number of packets acknowledged by a single TCP acknowledgment