Dedication

To the soul of my Father (may Allah be merciful to him) who dedicated all his effort for my best.
To my beloved Mother who is always there for me and without her unconditional love and care I would never have made it.
To my sister and brothers who gave me the strength to look forward and believed in me and
to my colleagues who supported me.

Acknowledgments

First and above all, I praise God, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in its current form due to the assistance and guidance of several people. I would therefore like to offer my sincere thanks to all of them.

My supervisor Prof. Mohamed Abdelsallam Abdalla, dean of the College of Veterinary Medicine, University of Science and Technology, my esteemed promoter, my cordial thanks for accepting me as a MSc. student, your warm encouragement, thoughtful guidance, critical comments, and correction of the thesis.

I want to express my deep thanks to my esteemed co-promoter Dr. Yassir Adam Shuaib, College of Veterinary Medicine, University of Science and Technology for the trust, the insightful discussion, offering valuable advice, for your support during the whole period of the study, and especially for your patience and guidance during the writing process.
I am grateful to Ngwa for her excellent technical assistance in the Lab. and her kindly answers to my general questions.

Thanks also to all the members of Microbiology, Pathology and Parasitology for providing a good atmosphere; I would like to thank them for everything.

Acknowledgement is due to Department of Veterinary Preventive Medicine and Public Health, College of Veterinary Medicine, Sudan University of Science and Technology for supporting this research.

I cannot finish without thanking my family. My thanks and gratitude is due also to my mother for her encouragement and patience without which this work would not have been possible.

I warmly thank my brothers, sister for they have provided assistance in numerous ways and their material and spiritual support in all aspects of my life.
List of Contents

Dedication..1
Acknowledgments..1
List of Tables..3
List of Figures..4
Abstract..5
ملخص الدراسة..6

List of Tables

Table (1): Describe the six favorable conditions required for the growth of foodborne pathogens.........................
..19
Table (2): Describe the food poising bacteria, main food sources and control measures..38
Table (3): Describe Blood Agar Ingredients... 49
Table (4): Describe MacConkey’s Ingredients …………………… 49
Table (5): Describe Nutrient agar Ingredients………………….. 50
Table (6): Describe motility media Ingredients …………………… 50
Table (7): Describe Hugh and Leifson’s of Basal Medium
Ingredients…………………………………………………………… 51
Table (8): Describe Nutrient Broth Ingredients Ingredients …... 52
Table (9): Describe peptone water Ingredients …………………….. 52
Table (10): Describe Mannitol Salt Ingredients ………………….. 53
Table (11): Describe Milk Plate Agar Ingredients……………….. 53
Table (12): Describe DCLS Ingredients ………………………… 54
Table (13): Describe EMB Agar …………………………………… 55
Table (14): Describe Plate Count Agar Ingredients………………. 56
Table(15): Bacteria species isolated in Different Operational
Points…………………………………………………………………… 65
Table (16): Prevalences of the Isolated Bacteria in the Legs, Breasts
and Backs of the Broilers Carcasses and in Reholding 1, Reholding
2 and Packing …………………………………………………………… 66
Table (17): Comparison of Mean Total Viable Counts of Bacteria at
Different Operational Points …………………………………….. 67

List of Figures

Figure (1): Logic Sequence for the Application of HACCP …………..13
Figure (2): CCP Decision Tree …………………………………………..17
Figure (3): Poultry Slaughtering house Processing steps …………..27
Figure (4): Serial dilutions of total viable count……………………63

5
Abstract

This thesis discusses the establishing the bacterial control points in a poultry slaughterhouse to determine if the points (after defeathering, after evisceration, after spray wash, after chilling and hands of workers.) are CCPs or not, to find out if there are significant differences between points in the production line and to investigate the prevalence of contaminating micro-organisms and evaluate these operations as possible critical control
points (CCPs) within a poultry slaughter hazard analysis and critical control point (HACCP) system.

Application of the H.A.C.C.P. system as a surveillance method of food safety depend on preliminary operations; among this, the most important is the establishing bacterial critical control points through food process. The selection of control points is one of the most important steps in the design of a Hazard Analysis and Critical Control Points (HACCP) system.

The numbers of 90 samples were taken. 72 samples from poultry meat carcasses (back, breast and legs) and 18 samples from hands of workers (reholding 1, reholding 2 and packing) were collected randomly from modern poultry abattoir in Khartoum State, the Sudan. Bacteriological analysis of Total Viable Count (TVC) revealed significant difference at P-value ($p \leq 0.05$) in CCPs. The highest contamination level of the breasts, back and legs recorded was after defeathering. The isolated bacteria were *Escherichia coli*, *Salmonella* species, *Pseudomonas* species, *Shigella* species and *Staphylococcus aureus*.
اختيار نقاط التحكم هي واحدة من أهم الخصائص في تصميم نظام تحليل المخاطر و نقاط التحكم الحرجة (HACCP)

في هذه الدراسة، تم أخذ عينات 90. تم أخذ 72 عينة من أحياء الدواجن (الظهر، الركاب ولاجل) و 18 عينة من أبي العمل (مكان إعادة التعليق، مكان إعادة التعليق 2، التغليف). بشكل عشوائي من مسلخ الدواجن الحديثة في واحة الخرطوم، السودان. بعد إنشاء النقاط الحرجة حسب نظام تحليل المخاطر وتحديد.

النقط الحرجة (الفيسب) في مزرعة حديث للدواجن في ولاية الخرطوم.

وكت مكون تحليل البكتيريولوجي غير كبير في قيمة p - (p ≤ 0.05) حيث أثبتت الدراسة أن أعلى مستوى تلوث الصدر والظهر والساقين سجلت بعد رشها.

تم عزل من النقط الحرجة أنواع مختلفة من البكتيريا شملت البكتيريا التولونية المعزولة (الشيفلا كولي)، (السالمونيلا، الزائفة (سودوموس)، الشيجلا و البكتيريا المعوية الذهبية (الاستاف أوريوس).