Study on *Pseudomonas aeruginosa* Isolated from Infected Patients: Copper Uptake, Hematological Findings and Effect of Some Medicinal Plants

By

Amjad Asri Abed Al-Tarawneh

A thesis submitted for the requirement of the award of M.Sc. degree in Clinical Microbiology

Supervisor:
Dr. Humodi Ahmed Saeed

Co-Supervisors:
Prof. Muayad Mahdi Abboud
Prof. Khaled Ahmad Al-Tarawneh

April, 2004
بسم الله الرحمن الرحيم

" و ما أوتيتم من العلم إلا قليلا

صدق الله العظيم
DEDICATION

TO
MY PARENTS
MY WIFE
MY BROTHER
AND MY SISTERS
ACKNOWLEDGEMENTS

I would like to express my deepest thanks to my supervisors Dr. Humodi A. Saeed of Sudan University of Science and Technology; furthermore, it is not enough to thank the help and advice given by Prof. Muayad M. Abboud and Prof. Khaled A. Al-Tarawneh. Their continuous support is highly appreciated and noted. Many thanks and appreciation are due to Dr. Khaled M. Khleifat of Mutah University, who was a good supporter with his knowledge and experience, who gave me a lot of his time. Thanks are also to the member of the staff of the department of Biological Sciences of Mutah University, especially Mr. Yasseen Al-Ghayse. Thanks are also to the staff members in the Faculty of Science in Sudan University of Science and Technology for their help during my work on this thesis. Thanks are also noted to Dr. Farah Al-Nasir and Mr. Mohammed Al-Bostangi of Faculty of Agriculture of Mutah University. Sincere thanks are also to the staff members in Al-Basheer hospital in Amman / Jordan, for their help and training.

Last but not least, I would like to thank all those, who helped me in a way or another during the preparation of these study.
Abstract

A local strain of *Pseudomonas aeruginosa* was isolated from a patient suffering from burns. The isolated strain was characterized by morphological and biochemical examinations.

This bacterial strain showed high copper uptake when inoculated and incubated with different copper sources such as cupric chloride dihydrate, cupric nitrate 3 hydrate and cupric sulfate, respectively.

A comparison with two other species of bacteria indicated that the copper uptake by *Pseudomonas aeruginosa* was significantly higher than that of *Bacillus thurengenesis* or *Enterobacter aerogenes* (P<0.05). The minimum concentration of copper compound that gave 50% copper uptake was shown to be the lowest in *Pseudomonas aeruginosa*, irrespective of the copper compound being used as a copper source.

An attempt was made to investigate the possible effect of certain medicinal plants and commercial antibiotics on the growth of *Pseudomonas aeruginosa*. Out of 18 different medicinal plants examined, only *Thymus capitatus* (30 mg) gave a zone of inhibition 10mm. These medicinal plants were shown to be more effective against *Bacillus thurengenesis* and *Enterobacter aerogenes* in comparison to *Pseudomonas aeruginosa*.

The hematological findings indicated that patients infected with *Pseudomonas aeruginosa* have significant differences in comparison to the control gave in the several parameters examined serum copper (P<0.05), serum iron (P<0.05), Iron binding capacity (P<0.05), serum ceruloplasmin (P<0.05) and serum transferring (P<0.05). Two types of control groups were used, healthy individuals and uninfected patients who had burn injury.
ملخص

تم عزل بكتيريا الزائفة الزنجارية (Pseudomonas aeruginosa) من مريض يعاني من الحروق الملتهبة و قد تم التعرف عليها عن طريق دراسة الشكل الظاهري والفحوصات البيوكيميائية وقد اظهرت هذه السلالة من البكتيريا مقدرة عالية لإمتصاص معدن النحاس من الوسط المحيط بها عندما تم حقنها وتحضينها على عدد من المركبات كمصادر للنحاس وهي كلوريد النحاس، نترات النحاس، كبريتات النحاس على التوالي.

كما لوحظ أن لهذه السلالة مقدرة لإمتصاص النحاس أعلى من نوعي البكتيريا (Bacillus thurengensis) والذين تم استخدامهما للمقارنة. وقد وجد أن هذه السلالة تحتاج إلى تركيز أقل من المركبات الثلاثة المستخدمة السابقة الذكر للوصول إلى 50% من الامتصاص إذا ما قرونت بالنوعين الأخرى المستخدمين للمقارنة.

ولوحظ أيضا أن لهذه البكتيريا مقاومة عالية للمصادعات الحيوية والنباتات الطبية مقارنة مع البكتيريا الأخرى. إذ تم دراسة تأثير ثمانية عشر نبات طبي على نمو هذه البكتيريا وكان نبات الزعتر (Thymus capitatus) الوحيد الذي أظهر تأثيراً واضحاً على نمو هذه البكتيريا. وبالمقابل فقد اظهرت هذه النباتات تأثيراً على البكتيريا الأخرى المستخدمة للمقارنة.

أظهرت الدراسة أيضاً أن هناك فروقات واضحة في تركيز كل من النحاس وال الحديد وبعض بروتينات الدم مثل (Ceruloplasmin) و (Transferrin) في مصل الدم للمرضى المصابين بهذه البكتيريا إذا ما قورنت بتركيزها في مصل الدم لكل من الأشخاص الإصحاء والمرضى المصابين بالحروق وبدون عدوى أيضاً.
CHAPTER ONE

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

1.2 *Pseudomonas aeruginosa*
 - 1.2.1 Pathogenesis of *Pseudomonas aeruginosa*
 - 1.2.2 Biological characteristics
 - 1.2.3 Antibiotics action against *Pseudomonas aeruginosa*

1.3 Heavy metal uptake
 - 1.3.1 Metal in the blood
 - 1.3.2 Biochemistry of copper ion
 - 1.3.3 Copper uptake and biosorption
 - 1.3.4 Copper in serum
 - 1.3.5 Metabolism of copper in human
 - 1.3.6 Deficiency of copper

1.4 Medicinal plants
 - 1.4.1 Types of medicinal plants
 - 1.4.2 Traditional medicinal plant
 - 1.4.3 Modern use of medicinal plants

1.5 Objectives of this study
CHAPTER TWO
MATERIALS AND METHODS

2.1 Materials 15
2.2 Methods 15

2.2.1 Collection of samples 15
 2.2.1.1 Bacterial samples 15
 2.2.1.2 Blood samples 15
 2.2.1.3 Plant samples 16

2.2.2 Growth conditions 16
 2.2.2.1 Luria-Bertani (LB) media preparation 16
 2.2.2.2 Isolation and Culturing bacteria 16
 2.2.2.2.1 Isolation 16
 2.2.2.2.2 Culturing 16
 2.2.2.2.3 Growth curve 17
 2.2.2.2.4 Bacterial inoculation 17

2.2.3 Morphological studies of bacteria 17

2.2.4 Biochemical tests to characterize \textit{Pseudomonas aeruginosa} using the Api system (Api 20 NE Kit) 18

2.2.5 Blood analysis 20
 2.2.5.1 Data analysis 26

2.2.6 Activity of some medicinal plants against \textit{Pseudomonas aeruginosa} 26
 2.2.6.1 Preparation of crude plant extract using Soxhlet apparatus 26
 2.2.6.2 Preparation of filter paper discs soaked with plant extraction 26
 2.2.6.3 Bacterial zone inhibition test using filter
paper discs soaked with plant extract

27

2.2.7 Antimicrobial susceptibility test

28

2.2.8 The uptake of copper ion by Pseudomonas aeruginosa
and other strains of bacteria

28

CHAPTER THREE

RESULTS

3.1 Pseudomonas aeruginosa

31

3.1.1 Morphological studies

31

3.1.2 Biochemical properties

32

3.1.3 Growth curve

32

3.1.4 Biomass

32

3.2 In vitro copper uptake by Pseudomonas aeruginosa

35

3.3 In vitro effects of antibiotics and some plant extracts
on the growth of Pseudomonas aeruginosa

52

3.3.1 Activity of medicinal plants

52

3.3.2 Susceptibility test

53

3.4 Blood analysis of patients infected with Pseudomonas
aeruginosa
56

CHAPTER FOUR
DISCUSSION
63

CHAPTER FIVE
CONCLUSION
69

FUTURE RECOMMENDATIONS
70

APPENDIXES
Appendix 1: Apparatus 72
Appendix 2: Reagents 73
Appendix 3: Glass Wares 74
Appendix 4: Miscellaneous 75
Appendix 5: Antibiotic discs 76
Appendix 6: Medicinal plants 77

REFERENCES
78
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table #</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Reading Table,</td>
<td>19</td>
</tr>
<tr>
<td>3.1 Biochemical characterization of Pseudomonas aeruginosa.</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Effect of cupric chloride dihydrate on the copper uptake ppm/g of three bacterial strains, Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes.</td>
<td>38</td>
</tr>
<tr>
<td>3.3 Effect of cupric sulfate on the copper uptake ppm/g of three bacterial strains, Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes.</td>
<td>40</td>
</tr>
<tr>
<td>3.4 Effect of cupric nitrate 3 hydrate on the copper uptake ppm/g of three bacterial strains, Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes.</td>
<td>42</td>
</tr>
<tr>
<td>3.5 Effect of three copper compounds cupric nitrate 3 hydrate, cupric chloride dihydrate and cupric sulfate on the copper uptake ppm/g of Pseudomonas aeruginosa.</td>
<td>44</td>
</tr>
<tr>
<td>3.6 The inhibition zone (mm) caused by different plant extract against Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes.</td>
<td>54</td>
</tr>
<tr>
<td>3.7 The inhibition zone (mm) of antibiotic discs against Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes.</td>
<td>55</td>
</tr>
<tr>
<td>3.8 Haematological findings in the patients infected with Pseudomonas aeruginosa and healthy control.</td>
<td>58</td>
</tr>
<tr>
<td>3.9 Comparison of the haematological findings between patients infected with Pseudomonas aeruginosa and control patients that had burn injury but without bacterial infection.</td>
<td>60</td>
</tr>
</tbody>
</table>
3.10 A comparison on the haematological findings between control of uninfected patients with burn and healthy control individuals. 60

3.11 A comparison between patients infected with Pseudomonas aeruginosa and both type of controls. 61
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure #</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Growth curve of Pseudomonas aeruginosa</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Amounts of copper uptake ppm/g of Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes using cupric chloride dihydrate as a copper source.</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Amounts of copper uptake ppm/g of Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes using cupric sulfate as a copper source.</td>
<td>41</td>
</tr>
<tr>
<td>3.4</td>
<td>Amounts of copper uptake ppm/g of Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes using cupric nitrate 3 hydrate as a copper source.</td>
<td>43</td>
</tr>
<tr>
<td>3.5</td>
<td>Amounts of copper uptake ppm/g by Pseudomonas aeruginosa grown with three copper compounds cupric nitrate 3 hydrate, cupric chloride dihydrate and cupric sulfate as a copper source.</td>
<td>45</td>
</tr>
<tr>
<td>3.6</td>
<td>Percentage of copper uptake by Pseudomonas aeruginosa using three different cupric compounds as a copper source.</td>
<td>46</td>
</tr>
<tr>
<td>3.7</td>
<td>Percentage of copper uptake by Bacillus thurengensis using three different cupric compounds as a copper source.</td>
<td>47</td>
</tr>
<tr>
<td>3.8</td>
<td>Percentage of copper uptake by Enterobacter aerogenes using three different cupric compounds as a copper source.</td>
<td>48</td>
</tr>
<tr>
<td>3.9</td>
<td>Percentage of copper uptake by Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes using Cupric chloride dihydrate as a copper source.</td>
<td>49</td>
</tr>
<tr>
<td>3.10</td>
<td>Percentage of copper uptake by Pseudomonas aeruginosa, Bacillus thurengensis and Enterobacter aerogenes using Cupric nitrate 3 hydrate as a copper source.</td>
<td>50</td>
</tr>
</tbody>
</table>
3.11 Percentage of copper uptake by *Pseudomonas aeruginosa*, *Bacillus thurengenesis* and *Enterobacter aerogenes* using Cupric sulfate as a copper source.