DEDICATION

To my teachers in all fields throughout my life

With great

Appreciation

I dedicate this work

Abdallami
ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisors, Professor Ahmed Ali Ismail and Professor Ali Mohamed Abdelmagid for their intensive advises, encouragement and continuous support during this study which might have not been completed without their supervision.

Iam also indepted to Dr. Ahmed Hussein A/Rahman, Head Department of Tsetse and Trypanosomosis in the Central Veterinary Research Laboratories (CVRL) for his continuous follow up during this work. I would also like to thank those helpful men, Ismail and Mohamed Eltayeb from the same department in the CVRL.

My deep appreciation to Professor A/Raheem Gameel, Head Department of Pathology, Faculty of Veterinary Medicine, University of Khartoum for his un-limited technical advice in the clinical-pathology and histopathology part of this study.

I would also like to express my sincere gratitude to my teachers and colleagues in the University of Bahr-Elgazal (UBG) and the University of Nyala for their continuous follow up and encouragement during this work. Special thank to Dr. Gusai Hussein A/Samad for his valuable help in the part of blood chemistry evaluation technique in this work.

I greatly appreciate the frequent assistance afforded by the staff members and technicians of the department of Veterinary medicine, College of Veterinary medicine and Animal production, Sudan University of Science and Technology (CVMA/SUST).

Hereafter a great thanks to Professor M. M. Mohamed Ahmed for reading the manuscript and Dr. Mohamed Tag-Eldin for his assistance in the statistical analysis.

The deeper more and more thanks belong to my family and all friends for their patience and help. Special thanks and appreciation to my wife and children who accompanied me through good and bad times.
ABSTRACT

The present study was designed to investigate the susceptibility of rats and donkeys to different stocks of *Trypanosoma evansi* infection in the Sudan. Two geographically different stocks of *T.evansi* were isolated from the two selected Eastern and Western camel zones of the country.

Both of these strains were found to be highly pathogenic with 100% fatality rate for both rats (10 individuals) and donkeys (4 head). However, parasitological, pathological, haematological as well as clinical differences between the two geographically different stocks were reported in this study.

Based on wet preparation diagnostic technique, parasitaemia was detectable in the blood of both kinds of infected animals within 4 days post inoculation. The course of the infection was quite variable as regards to species. It was 22 to 93 days in rats and 55 to 153 days in donkeys.

In addition to the statistically significant (p< 0.05) decrease in the red blood cells count (-38.1% to -69.2% or -58.7% to -75.5%), packed cell volume (-29.5% to -42.3% or -63%) and haemoglobin concentration (-38.5% upto -42.9%) of the infected rats or donkeys, one particular mechanism of anaemia known as erythrocyte osmotic fragility was also found to be progressively increased-particularly in the donkeys infected with *T.evansi* (Showak stock)-compared with the control group and the preinfection values. Moreover, some visual and microscopical blood disorders-such as erythrocyte granulation, rouleau formation and Methemoglobinemia as well as lymphocytosis and excessive accumulation of fat granules were observed in these infected animals.

Fever (41°C) was observed at the onset of the disease in the infected donkeys. However, respiratory and heart rates were the most and continuously affected, fluctuating throughout the duration of the disease. This was clearly explained by the obvious gross pathological lesions found in these vital organs at necropsy (pigmentation and white spots in lung, tracheal collapse and white spots in heart).

It was concluded that both strains of *T.evansi* were highly pathogenic to rats and the donkeys. Thus the donkey may not only act as a reservoir when naturally infected with
T. evansi in the Sudan but it may die of the infection. In addition, the eastern strain (Showak-84) was more severe and more evident in the bloodstream compared with the western one (Abu-Zabad-1), which was found to be hidden in the microvascular system of the tissue organs as well as other body fluids rather than blood.
ملخص

صمم هذا البحث لدراسة قابلية الحمير وفئران التجربة للأصابع التجريبية بالطفيلي T.evansi لمرض الجفار في الإبل بالسودان. تم عزل عينة لهذا الطفيلي من جمل مصاب بمنطقة الشوك في شرق السودان وعينة أخرى من جمل آخر مصاب بمنطقة أبو زبيد في غرب البلاد.

أظهرت العينات امراضية عالية في الحيوانات المصابات بالطفيلي بمعدل وفاء 100% مع وجود فرق في بعض الخصائص الطفيلي والمرضية والتغيرات الدموية بين المجموعات المصابه بكل عينة على حده. وتمت العينات المصابة خلال 1 إلى 3 شهور بعد الحقن بينما نمت الامراض على مدى 2 إلى 5 شهور.

عند فحص مسحة دم سائلها بسيطه فإن فترة الحضانة لهذه الطفيلييات تراوحت بين 2 إلى 4 أيام بعد حقن الحمير والفئران في الوريد أو الغشاء البريتوني على الترتيب أما عند فحص دم مركز بالطريق المركزي لأنابيب شعيرية فإن فترة الحضانة لا تتجاوز 3 أيام بعد الحقن.

في الحمير تظهر الحمى (41°C) في بداية المرض فقط بينما يستمر معدل التنفس ومعدل النبض في التأثر بحيث تتفوق تتكشف لتعود إلى الطبيعي في شكل أمور متكررة حتى نهاية الدراسة.

تحدث الأصابات في عدد كريات الدم الحمراء والنسبة المنوية تزامن هذه الكريات وتركيز الهيموغلوبين في الدم كما لوحظت زيادة واضحة في هشاشة كريات الدم الحمراء. كل هذا من دلالات قفر الدم في الحيوانات المصابة. أضف إلى ذلك تغييرات مجهريه وعينية في دم الحيوانات المصابة منها تراص كريات الدم الحمراء على شكل عبود حديدية (erythocyte granulation) وتحبيث هذه الكريات (rouleau formation) وتغيير لون الدم إلى اللون البني (Methemoglobinemia) وتحتاج الإضافات إلى زيادة تواجد حبيبات الدهن في الدم.

هذا وقد خلصت هذه الدراسة إلى أن عينة الطفيلي المستخدم في هذا البحث مرضه جداً وقائله T.evansi للحمير والفئران وعليه فإن الحمير قد لا تكون مجرد حارس للأصابع الطبيعية بطفيلي بل قد تكون الأصابع قاتلة مما يلعب دور كبير في وبائية مرض الجفار خاصة وأن الحمير غالبا ما ترافق مراحل الإبل في السودان. كما وأن العذرة الشرقية (Showak-84) أكثر ضراوة وتواجد في الدم المحيطي مقاومة بالعذرة الغربيه (Abu-Zabad-1) التي تتواجد بكثافه داخل الأنسجة العضوية وغيرها من سوائل الجسم المختلفه.
LIST OF CONTENTS

Dedication I
Acknowledgement II
Abstract III
Arabic abstract V
List of contents VI
List of Tables X
List of Figures XI
List of Plates XII

Chapter one: Introduction and objectives
1.1. Introduction 1
1.2. The objectives 3
1.2.1. Overall objectives 3
1.2.2. Specific objectives 3

Chapter two: Literature review
2.1. The history of *Trypanosomes* 5
2.2. Definition 5
2.3. Classification 6
2.4. Morphology, life cycle and biology of *Trypanosomes* 10
2.4.1. Morphology 10
2.4.2. Motility 10
2.4.3. Life cycle and multiplication 10
2.4.4. Biology 11
2.5. Transmission 11
2.5.1. Method of transmission 13
2.5.1.1. Cyclical or biological transmission 13
2.5.1.2. Mechanical transmission 13
2.5.1.2.1. Tabanids in Sudan 14
2.5.1.3. Other methods of transmission 14
2.5.1.3.1. Vampire bats (*Desmodes rotundus*) 14
2.5.1.3.2. Coitus 15
2.5.1.3.3. Ingestion 15
2.5.1.3.4. Transplacental transmission 15
2.5.1.3.5. Iatrogenic means 15
2.5.1.3.6. Ticks 15
2.6. Pathogenesis 16
2.6.1. Clinical signs 17
2.6.2. Postmortem signs 17
2.6.3. The haematological features of trypanosomosis 17
2.6.4. Trypanosomosis of Laboratory animals 18
2.6.5. Equine trypanosomes 19
2.6.5.1. Dourine 20
2.6.5.2. Mal de caderas 21
2.6.5.3. Surra 21

2.7. Trypanosoma evansi 23
2.7.1. Origin 23
2.7.2. Distribution 24
2.7.3. Hosts 24
2.7.4. Morphology of *T.evansi* 25
2.7.5. Transmission of *T.evansi* 26
2.7.6. Pathogenicity of *T.evansi* 27
2.7.6.1. Blood chemistry 28

2.8. Diagnosis of trypanosomosis 29
2.8.1. Identification of the agent 29
2.8.1.1. Direct examination techniques 29
2.8.1.2. Concentration techniques 30
2.8.1.3. Biological techniques 31
2.8.1.4. Detection of trypanosomal antigen 31
2.8.1.5. Detection of trypanosomal DNA 31
2.8.2. Serological tests 31
2.8.3. Biochemical tests 32
2.8.3.1. Formal-gel test 32
2.8.3.2. Mercuric chloride test 32

2.9. Diagnosis of *T.evansi* 33

2.10. Control 35
2.10.1. Control of *T.evansi* 35
2.10.1.1. Chemotherapy 35
2.10.1.2. Chemoprophylaxis 36

Chapter Three: Material and methods 38
3.1. Experimental animals 38
3.1.a. Rats 38
3.1.b. The donkeys (asses) 40
3.1.b.1. Preinfection screening of the experimental donkeys 40
3.1.b.1.1. Blood parasite 40
3.1.b.1.2. Gastro-intestinal parasite 40
3.1.b.1.3. Others diseases 40
3.1.b.2. Pre-infection treatment 40

3.2. Blood sampling 41
3.2.a. In rats 41
3.2.b. In donkeys 43

3.3. The preinfection data to be collected 43
3.3.a. In rats 43
3.3.b. In donkeys
3.3.b.1. Clinical parameters
3.3.b.2. Parasitological examination
3.3.b.3. Blood haemogram
3.3.b.3.1. Packed red cells volume (PCV%)
3.3.b.3.2. Haemoglobin concentration (Hb)
3.3.b.3.3. Blood cells count
3.3.b.3.4. Erythrocyte indices
3.3.b.3.5. Erythrocyte fragility

3.5. The parasite (Trypanosoma evansi)
3.5.1. The survey
3.5.1.1. Showak-84 stock
3.5.1.2. Abu-Zabad-1 stock
3.5.1.3. Parasite species confirmation
3.6.2. The experimental infection
3.6.2.a. Infection of the rats
3.6.2.b. Infection of the donkeys
3.6.3. Parameters to be assessed
3.6.3.a. Rats
3.6.3.a.1. Clinical signs
3.6.3.a.2. Parasitaemia
3.6.3.a.2.1. Parasite detection
3.6.3.a.2.2. Parasite count
3.6.3.a.2.2.1. The wet film parasite count method
3.6.3.a.2.2.2. Parasite count in haemocytometer
3.6.3.a.3. Necropsy
3.6.3.a.4. Stabilate preservation
3.6.3.b. Donkeys
3.6.3.b.1. Clinical signs
3.6.3.b.2. Parasitaemia
3.6.3.b.3. Postmortem (Necropsy)

3.7. Statistical analysis

Chapter four: Results
4.1. The Preinfection data
4.1.1. The results of the preliminary screening of the experimental animals
4.1.1.a. Rats
4.1.1.b. The donkeys
4.1.2. Treatment response
4.1.3. Haematological and some clinical values and parameters
4.1.4. Mean erythrocyte osmotic fragility of the preinfected experimental and control donkeys
4.2. Postinfection results

4.2.a. Results of rats

4.2.a.1. Clinical signs of the infected rats

4.2.a.2. Parasitaemia development in the infected rats

4.2.a.3. The haematological changes of the infected rats

4.2.a.3.1. Some microscopical and visual abnormalities of the tail blood of the infected rats

4.2.a.3.2. Packed cell volume (PCV%)

4.2.a.3.3. Red blood cells (RBCs) count of the infected rats

4.2.a.3.4. White Blood Cells (WBCs) counts of the infected rats

4.2.a.4. The survival period of the infected rats

4.2.a.5. Postmortem findings of the infected rats

4.2.a.6. Impression smears

4.2.b. Results of the donkey

4.2.b.1. Clinical signs of the infected donkeys

4.2.b.1.1. Changes in some clinical parameters of the infected donkeys

4.2.b.1.2. General body condition

4.2.b.2. Parasitaemia development in the infected donkeys

4.2.b.3. The haematological changes of the infected donkeys

4.2.b.3.1. Some microscopical and visual abnormalities of the blood of the infected donkeys

4.2.b.3.2. Packed cell volume (PCV%)

4.2.b.3.3. Haemoglobin concentration of the infected donkeys

4.2.b.3.4. Red blood cells (RBCs) count of the infected donkeys

4.2.b.3.5. White Blood Cells (WBCs) of the infected donkeys

4.2.b.3.6. The erythrocyte osmotic fragility (EORT)

4.2.b.4. The survival period of the infected donkeys

4.2.b.5. Postmortem findings of the infected donkeys

4.2.b.5.1. Impression smears

Discussion

Conclusion

Recommendations

References
LIST OF TABLES

3.1. Ration ingredient of the experimental rats 39
3.2. The serial dilution and concentrations of 1% NaCl in Distilled Water 46
3.3. Parasitaemia estimation 56
3.4. Trypanosomes counting stain 57
4.a.1. Some haematological values of non-infected rats (mean of 5 rats each) 61
4.b.1. The preinfection data of the donkeys that infected with Showak stock *T.evansi* 61
4.b.2. The preinfection data of the donkeys that infected with Abu-Zabad stock *T.evansi* 61
4.b.3. Some preinfection clinical parameters of the experimental donkeys (mean of four animals) 61
614.a.2. RBCs counts in rats infected with either Showak or Abu-Zabad *T.evansi* stocks. 73
4.a.3. WBCs counts in rats infected with either Showak or Abu-Zabad *T.evansi* stocks 73
4.a.4. Time to death of individual rats infected with either Showak or Abu-Zabad *T.evansi* stocks. 76
4.b.4. PCV % in donkeys infected with either Showak or Abu-Zabad *T.evansi* stocks. 92
4.b.5. Multiple comparisons of PCV% in donkeys infected with either Showak or Abu-Zabad *T.evansi* stocks. 92
4.b.6. Hb. Content in donkeys infected with either Showak or Abu-Zabad *T.evansi* stocks. 95
4.b.7 Multiple comparisons of Hb content in donkeys infected with either Showak or Abu-Zabad *T.evansi* stocks. 95
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.</td>
<td>Classification of trypanosomes</td>
<td>9</td>
</tr>
<tr>
<td>1.2.</td>
<td>Classification of Vectors</td>
<td>12</td>
</tr>
<tr>
<td>1.3.</td>
<td>The phylogenetic of T.evansi</td>
<td>23</td>
</tr>
<tr>
<td>3.1.</td>
<td>The history of the Eastern Sudan area parasite stock</td>
<td>49</td>
</tr>
<tr>
<td>3.2.</td>
<td>The history of the Western Sudan area parasite stock</td>
<td>51</td>
</tr>
<tr>
<td>4.a.1.1.</td>
<td>Mean parasitaemia levels in rat infected with Showak or Abu-Zabad T.evansi stocks.</td>
<td>64</td>
</tr>
<tr>
<td>4.a.1.2.</td>
<td>Parasitaemia levels of rats infected with Showak stock.</td>
<td>65</td>
</tr>
<tr>
<td>4.a.1.3.</td>
<td>Parasitaemia levels of rats infected with Abu-Zabad stock</td>
<td>65</td>
</tr>
<tr>
<td>4.a.2.1</td>
<td>PCV % in rats infected with T.evansi.</td>
<td>70</td>
</tr>
<tr>
<td>4.a.2.1.</td>
<td>Percent increase or decrease in RBC counts from pre.i.v. in rats infected with either Showak or Abu-Zabad T.evansi stocks.</td>
<td>74</td>
</tr>
<tr>
<td>4.a.2.2.</td>
<td>Percent increase or decrease in WBC counts from pre.i.v. in rats infected with either Showak or Abu-Zabad T.evansi stocks.</td>
<td>74</td>
</tr>
<tr>
<td>4.b.1.1.</td>
<td>Changes in the clinical parameters in the infected donkeys with stocks of T.evansi.</td>
<td>80</td>
</tr>
<tr>
<td>4.b.1.2.</td>
<td>Mean % increase or decrease in clinical parameters from the pre.i.v. of infected donkeys.</td>
<td>81</td>
</tr>
<tr>
<td>4.b.2.1.</td>
<td>Mean parasitaemia levels in donkeys infected with either Showak or Abu-Zabad T.evansi stocks.</td>
<td>86</td>
</tr>
<tr>
<td>4.b.2.2.</td>
<td>Comparison of mean parasitaemia levels in donkeys and rats infected with either Showak or Abu-Zabad T.evansi stocks.</td>
<td>86</td>
</tr>
<tr>
<td>4.b.3.1.</td>
<td>PCV% in donkeys infected with either Showak or Abu-Zabad T.evansi stocks.</td>
<td>93</td>
</tr>
<tr>
<td>4.b.3.2.</td>
<td>Mean Hb content in donkeys infected with either Showak or Abu-Zabad T.evansi stocks.</td>
<td>96</td>
</tr>
<tr>
<td>4.b.3.3.</td>
<td>Percent increase or decrease in RBC counts from pre.i.v. in donkeys infected with either Showak or Abu-Zabad T.evansi stocks.</td>
<td>98</td>
</tr>
<tr>
<td>4.b.3.4.</td>
<td>Percent increase or decrease in WBC counts from pre.i.v. in donkeys infected with either Showak or Abu-Zabad T.evansi stocks.</td>
<td>98</td>
</tr>
<tr>
<td>4.b.4.1.</td>
<td>Mean erythrocyte fragility in donkeys infected with Showak Stock.</td>
<td>100</td>
</tr>
<tr>
<td>4.b.4.2.</td>
<td>Mean erythrocyte fragility in donkeys infected with Abu-Zabad Stock.</td>
<td>100</td>
</tr>
<tr>
<td>4.b.4.3.</td>
<td>Erythrocyte osmotic fragility in donkeys infected with either Showak or Abu-Zabad T.evansi stocks during different weeks p.i. compared with the preinfection corpuscular fragility.</td>
<td>101</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Number</th>
<th>Image Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The socio-economic importance of the donkey in the Sudan</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Rat-tail blood sampling</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>The serial %NaCl concentration for the erythrocyte fragility test of the blood infected with T.evansi</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Thin Giemsa's stained blood film of infected rat with T.evansi</td>
<td>53</td>
</tr>
<tr>
<td>4.a.1.</td>
<td>T.evansi infected blood of rat showing rouleaux</td>
<td>67</td>
</tr>
<tr>
<td>4.a.2.</td>
<td>Erythrocyte aggregation in the infected blood showing agglutinated parasites (T.evansi) surrounding leukocytes</td>
<td>68</td>
</tr>
<tr>
<td>4.b.1.1</td>
<td>Two donkeys showing weakness and dullness due to T.evansi Infection</td>
<td>82</td>
</tr>
<tr>
<td>4.b.1.2</td>
<td>Excessive emaciation in addition to characteristic weakness of the hind quarter affecting the movement of an infected animal with T.evansi</td>
<td>83</td>
</tr>
<tr>
<td>4.b.1.3</td>
<td>A recumbent before death due to T.evansi (Abu-Zabad stock) infection</td>
<td>84</td>
</tr>
<tr>
<td>4.b.1.4</td>
<td>An infected donkey with T.evansi showing convulsions before death</td>
<td>84</td>
</tr>
<tr>
<td>4.b.2.1</td>
<td>Blood of donkeys showing rouleau formation due to T.evansi infection</td>
<td>88</td>
</tr>
<tr>
<td>4.b.2.2</td>
<td>Erythrocyte aggregation in the blood of infected donkey with T.evansi</td>
<td>89</td>
</tr>
<tr>
<td>4.b.2.3</td>
<td>Buffy coat preparation of an infected blood of donkey with T.evansi revealing excessive accumulation of fat granules</td>
<td>90</td>
</tr>
<tr>
<td>4.b.3.1</td>
<td>An infected donkey with T.evansi showing splenomegaly and tracheal collapse</td>
<td>104</td>
</tr>
<tr>
<td>4.b.3.2</td>
<td>Melanene infiltration in the lumen of the oesophagus at necropsy of an infected donkey with T.evansi</td>
<td>104</td>
</tr>
<tr>
<td>4.b.3.3</td>
<td>The liver of an infected donkey with T.evansi looked black due to excessive haemorrhage spots</td>
<td>105</td>
</tr>
<tr>
<td>4.b.3.4</td>
<td>Pigmented lung with atrophied epical loops, in addition to white spots in the heart of an infected donkey with T.evansi</td>
<td>105</td>
</tr>
</tbody>
</table>