DEDICATION
TO THE GREATEST PERSONS IN MY LIFE
MY MOTHER AND MY FATHER
FOR THEIR LOVE AND SUPPORT
Acknowledgment

First of all my thanks to ALLAH.

I wish to express my thanks and gratitude to my supervisor **Dr. Mohammad Baha Eldin Ahmed** for his close supervision, assistance and continuous support during this work. Without his help, this work could not have been accomplished.

I am also indebted to **Mr. Ahmad Galander**, co-ordinator of the M.Sc program for his continuous encouragement.

My gratitude is also extended to **Mr. Osama Kobara**, senior technician of El- Bashair hospital main laboratory.

I would also like to express my appreciation to the help provided by **Mr. Hussein Sharif** in the faculty of medical laboratories in Al-Ribat university.
Abstract

This study was conducted in different hospitals and health centers in Khartoum state. The study aimed to investigate the prevalence of coccidian parasites among HIV/AIDS patients.

The results showed that out of 52 HIV/AIDS patients examined, 10 (19.23%) were found to harbor coccidian parasites. The intestinal coccidian parasites were detected by the modified Zeil-Neelsen stain, Chromotrope stain, formal-ether technique and direct wet smear technique.

The study demonstrated that the prevalence rate of intestinal coccidian in females (21.1%) was slightly higher than in males (18.2%).

The results showed that the rate of C. parvum (13.5%) in HIV/AIDS patients was higher than rate of I. belli (5.8%) in the same patients.

The study revealed that the prevalence of C. parvum among females (15.8%) was slightly higher than in males (12.1%) and the rate of I. belli was slightly higher in males (6.1%) than in females (5.3%).

The investigation revealed very high sensitivity (100%) for the ZN stain and chromotrope stain, while very low sensitivities (40% and 10%) for the formal-ether and wet smear respectively.
المقدمة

اجريت هذه الدراسة في المستشفيات والمراكز الصحية في ولاية الخرطوم. هدفت الدراسة لتقصي مدى انتشار طفيليات الكوكسديا وسط مرضى متلازمة نقص المناعة المكتسبة.

اظهرت الدراسة اصابة عشرة مرضى من اصل 52 تم فحصهم بطفيليات الكوكسديا وقد مثلوا نسبة اصابة 19.23%.

تم التعرف على طفيليات الكوكسديا باستخدام صبغة ZN والكروموتروب وتقنية تركيز الفورمالين الكحولي واستعمال المسحة الرطبة.

اظهرت الدراسة ان نسبة الاصابة بالكوكسديا المعوية في الاناث كانت 21.1% وهي اعلى بنسبة بسيطة عن اصابة الذكور 18.2%.

اظهرت الدراسة ان نسبة الاصابة B. parvum وسط مرضى متلازمة C. parvum كانت اكبر من نسبة الاصابة B. belli في نفس المرضى.

اظهرت الدراسة ان نسبة الاصابة B. parvum كانت اكبر في الاناث (15.8%) عنها في الذكور (12.1%) بينما الاصابة B. belli كانت اكبر بنسبة بسيطة في الذكور (6.1%) عنها في الاناث (5.3%).

اظهر التخصص حساسية عالية (100%) عند استعمال صبغتي ZN والكروموتروب بينما حساسية اقل قد رصدت مع تقنية تركيز الفورمالين الكحولي والمسحة الرطبة (40%, 10%) على التوالي.
Table of contents
Chapter one: Introduction and literature review

1.1 Introduction

1.2 Coccidia

1.2.1 Classification

1.2.3 Life cycle of coccidian parasites

1.2.4 Genus Cryptosporidium

1.2.4.1 Morphology, biology, and life cycle

1.2.4.2 Pathology, pathogenesis, and symptomatology

1.2.4.3 Immunity to Cryptosporidium

1.2.4.4 Diagnosis of Cryptosporidiosis

1.2.5 Genus Isospora

1.2.5.1 Morphology, biology, and life cycle

1.2.5.1 Clinical features and laboratory diagnosis

1.4 HIV/AIDS infection in humans

1.5 Intestinal immunity

1.5.1 Immunity to protozoa

1.6 Protozoa and HIV/AIDS

Objectives

General objective

Specific objectives

Rationale

Chapter two: Material and Methods

2.1 Study design

2.2 Study area

2.3 Study populations

2.4 Sample size

2.5 Ethical consideration

2.6 Specimens and samples

2.7 Methods

2.7.1 Direct saline stool preparation

2.7.2 Formal-ether concentration technique

2.7.3 Modified Ziehl-Nelson stain

2.7.4 Chromotrope staining technique

2.8 Data analysis

Chapter three: results

Chapter four: Discussion

Conclusion

Recommendations

References

Appendices

Appendix 1: Modified Ziehl-Neelsen Stain

Appendix 2: Chromotrope stain
List of tables

<table>
<thead>
<tr>
<th>Table No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>The overall prevalence rate of coccidian parasites among HIV patients.</td>
<td>26</td>
</tr>
<tr>
<td>Table 2</td>
<td>The prevalence rate of coccidian parasites among HIV/AIDS patients according to gender.</td>
<td>27</td>
</tr>
<tr>
<td>Table 3</td>
<td>The prevalence of C. parvum and I. belli among patients with HIV.</td>
<td>28</td>
</tr>
<tr>
<td>Table 4</td>
<td>The prevalence of C. parvum among HIV/AIDS patients according to gender.</td>
<td>29</td>
</tr>
<tr>
<td>Table 5</td>
<td>The prevalence of I. belli among HIV/AIDS patients according to gender.</td>
<td>30</td>
</tr>
<tr>
<td>Table 6</td>
<td>Sensitivity of different techniques used for the detection of coccidian parasites among HIV/AIDS patients.</td>
<td>31</td>
</tr>
</tbody>
</table>
List of figure

<table>
<thead>
<tr>
<th>Figure No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Life cycle of Cryptosporidium parvum</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Lifecycle of Isospora belli</td>
<td>13</td>
</tr>
<tr>
<td>Figure 3</td>
<td>The prevalence rate of coccidian parasites among HIV/AIDS patients according to gender</td>
<td>27</td>
</tr>
<tr>
<td>Figure 4</td>
<td>The prevalence of C. parvum and I. belli among patients with HIV.</td>
<td>28</td>
</tr>
<tr>
<td>Figure 5</td>
<td>The prevalence of C. parvum among HIV/AIDS patients according to gender.</td>
<td>29</td>
</tr>
<tr>
<td>Figure 6</td>
<td>The prevalence of I. belli among HIV/AIDS patients according to gender.</td>
<td>30</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Sensitivity of different techniques used for the detection of coccidian parasites among HIV/AIDS patients.</td>
<td>31</td>
</tr>
</tbody>
</table>