Acknowledgement

I am particularly grateful to my supervisor Dr. Humodi Ahmed Saeed for his kind help and advice in the supervision through out the preparation this thesis, and for his intimate warm manner to answer all queries per tenant to the thesis.

I express my thanks for all friends who helped me with their advice.

My special thanks ought to be given to individual friends and colleagues working at Public Health Laboratory and National Health Laboratory for unfailing assistance.

My thanks extended to Mr. Mamoun Eltahir of Amipharma Laboratories for his help in providing Tetracycline powder. My thanks extended to Medical and Aromatic Plants Research Institute in providing Standard Organism.

Abstract

This study investigated the activity of tetracycline against specific bacterial species isolated from different clinical specimens in the period from August to October 2003. These specimens were cultured on enriched, and selective media. The isolates were identified as E. coli (n = 10), Proteus spp. (n = 10) salmonella spp. (n = 10), Shigella spp. (n = 10) and Klebsiella spp. (n = 10).

All isolate were studied for their susceptibility to tetracycline using the disk diffusion method on Mueller Hinton agar and serial dilution.

The results indicated that the rate of resistance was 68% and the minimum inhibitory concentrations (MICs) were determined for each isolate and was found to be as follows: (mg/ml) $E.\ coli > 30$, Shigella spp. > 30, Klebsiella spp. ≤ 30 to ≥ 7.5 , Proteus spp. >30 and salmonella spp. ≤ 30 to ≥ 15 .

الخـلاصــــــة

أجردت هذه الدراسة لاستقصاء فعالية التتراسيكلين كمضاد حيوي فعال ضد سلالات معينة من البكتيريا عزلت من عينات مختلفة في الفترة من أغسطس إلى اكتوبر 2003م.

هذه العينات زرعت في أوساط غذائية مختلفة. تمع زل هذه السلالات والتعرف عليها وكانت كالآتي: الاشريكية القولونية (10 سلالات)، الشجيلات (10 سلالات)، الكبسيلة (10 سلالات)، والسالمونيلا (10 سلالات).

جميع السلالات المعزولة درست من حيث حساسيتها للتتراسيكلين وذلك بإجراء تجربة الحساسية بطرد قة الانتشار من الله قراص على وسطمولر هنتون، وطرد قة التخفيف المتسلسل لتحدد التركيز المثبط الادنى للمضاد الحيوي.

أثبت ت النتائج أن نسبة م قاومة السلالات المعزولة للتتراسيكلين (68%) ونسبة التركيز المثبط الأدنى كانت كالآتي:

سلالة الأشريكيه القولونية >30 mg/ml

سلالة الشجيلات > 30 mg/ml

سلا لات المت قلبات 30<

سلالة الكلبسيلا من 7.5 إلى 30 mg/ml ≥

سلالة السالمونيلا من 15 إلى 20 mg/ml ضا ≥ mg/ml من 15

Table of contents

			Pag
Acknowle	edgement		i
Abstract (English)		ii
Abstract ((Arabic)		iii
Table of o	contents		iv
List of tal	oles		viii
List of Fig	gures		ix
Appendix	es		X
Chapter	1: Introduction and literature re	eview	
Introducti	on		1
Antibiotic	es es		1
Definition	1		1
Classifica	tion		1
Justification and Object	tives	3	
Justification		3	
Objective			3
General C)bjectives		3
Specific (Objectives		3
The tetrac	cyclines		4
Historical	background		4
	ine structure		4
Mode of a	action		5
Pharmaco	okinetics		6
Mechanis	m of Resistances		6
Enetrobac	cteriaceae		7
Properties	5		7
Natural h	abitats		7
Clinical S	ignificance		8
Human ex	xtra-intestinal infection		8
Human in	itestinal infection		8
Salmonel	la		9
Escherich	nia coli (E. coli)		10
Proteus			11
Shigella			11
Vibrio			11
The Camp	pylobacters		12
Chapter	2: Literature Review		
Literature	Review		13
Chapter3	3. Materials and methods		

Materials	<u>1</u>	18
Methods]	18
Study area	18	
Study population	18	
Collection of Specimens	1	18
Preparation of media	1	18
Processing of specimens	18	
Macroscopic examination of specimen	s 18	
Primary isolation (inoculation and incu	ıbation) 19	
Examination of culture (colonal morphology)	19
Purification of isolates		20
Identification of isolated	bacteria 2	20
Gram stain		20
Biochemical tests		21
Fermentation of carbohy	drates 2	21
Antibiotic susceptibility	pattern 2	21
Disc diffusion susceptibi		21
Media and reagent		21
Preparation of inoculum	-	22
Testing of antibiotic	-	22
Interpretation "reading th	ie plates"	23
		23
Media and reagents used	2	23
Preparation of antibiotic	solution 2	24
Preparation of inoculum	2	24
Dilution test in broth for	MIC 2	24
Standard organism	25	
Statistical analysis	2	25
Chapter 4. Results		
Results		26
Type of specimens collec	eted 2	26
Microscopic examination	of specimens	29
Cell morphology and Gra	am stain	29
Secondary Identification	2	29
Biochemical tests	2	29
In vitro antimicrobial sus	ceptibility test	30
The disk diffusion metho	d 3	30
The minimum inhibitory	concentration (MIC)	35
Chapter 5. Discussion		
Discussion	3	39
Chapter 6: Conclusion	and Recommendation	
Conclusion and Recomm	endations	45

Conclusion	45
Recommendations	45
References	46

List of Tables

Table 1 Table 2 Table 3 Table 4 Table 5 Table 6	Proteus and E. coli standards Proteus and E. coli standards distribution of specimens according to disease and sex Distribution of specimens according to age and sex Cell morphology and Gram stain of bacteria isolated Biochemical properties of bacteria isolated	Page 25 25 27 29 29
Table 7	Antimicrobial sensitivity test of Enterobacteria isolated	
Table 8 Table 9 Table 10 Table 11 Table 12 Table 13	from infected patients Sensitivity of <i>E. coli</i> isolates to tetracycline Sensitivity of Salmonella. isolates to tetracycline Sensitivity of Shigella isolates to tetracycline Sensitivity of Proteus isolates to tetracycline Sensitivity of Kleibseilla isolates to tetracycline The minimum inhibitory concentration (MIC) of <i>E coli</i>	30 33 33 34 34 35 36
Table 14	(100% resistance) The minimum inhibitory concentration (MIC) of	
Table 15	Salmonella (10% resistance) The minimum inhibitory concentration (MIC) of	36
Table 16	Shigella (100% resistance) The minimum inhibitory concentration (MIC) of	37
Table 17	Proteus (100% resistance) The minimum inhibitory concentration (MIC) of	37
	Kleibseilla sp. (30% resistance)	38

List of Figures

		Page
Figure 1	Tetracycline structure	4
Figure 2	Distribution of specimens according to disease and sex	28
Figure 3	% of resistance of enterobacteriaceae isolated to	
Figure 4	tetracycline (No. = 34) The resistance rate to tetracycline among	31
	enterobacteriaceae isolated (No. = 50)	32

Appendices

		Page
Appendix 1	Instruments	54
Appendix 2	Media	54
Appendix 3	Reagents and Chemicals	55
Appendix 4	Glassware	55
Appendix 5	Antibiotics	56
Appendix 6	Other materials	56
Appendix 7	Investigation and Reporting form	57
Appendix 8	Preparation of McFarland Turbidity Standard	58
Appendix 9	Nutrient agar	59
Appendix 10	Nutrient broth	59
Appendix 11	Mueller Hinton agar	60
Appendix 12	MacConkey's agar	60
Appendix 13	Sterilization of Instruments and Glassware	61
Appendix 14	Sterilization of solution	61
Appendix 15	Bacteriological wire loop sterilization	61