Dedication

For my parents for their kind

To my wife and my children (Mohamed Elmontaser, Sohaib & Khabab) for their patience

To my brother, sisters, friends and colleagues

For their encouragement and support

And every one helped me.
Acknowledgement

Thanks must first be given to Allah, for giving me health, strength, and power to achieve this work and to make my dream real.

I thank my parents for asking Allah to keep care and success.

I’m very glad to thank my supervisor Dr. Alnazier for his endless guidance, my thanks to my colleagues for their encouragement.

My thanks extended to my brother Dr. Alneil Abdalla for his continuous advices and supporting and all the staff in laboratory Administration in Khartoum State for their helpful, collaboration and endless help during my research especially my brother Nasher Albushra.
Table of Contents

List of Tables ix
List of Figures xiii
Abstract xviii
Abstract Arabic xix

CHAPTER ONE

Introduction 1

1.1 Clinical chemistry 1

1.1.1 Type of clinical chemistry instrumentation 2

1.2 Importance of calibration 3

1.3 Type of error 4

1.4 Problem definition 4

1.5 Thesis objective 5

1.6 Area study 5

1.7 Overview of the study 5

CHAPTER TWO

Theoretical Background 7

2.1. Clinical chemistry 7

2.1.1 The large array of laboratories 8

2.1.2 Example of the tests in chemical pathology 8

2.2 Type of Clinical Chemistry Instrumentation 8

2.2.1 Colorimeter 9

2.2.2 Spectrophotometer 9
2.2.3 Flame photometer
2.2.4 Fluorometry
2.2.5 Enzyme-Linked Immune Sorbent Assay (ELISA)
 2.2.5.1 Washer Systems
 2.2.5.2 ELISA Plate Readers
2.2.6 Auto analyzers
 2.2.6.1 The Auto Analyzer is consists of
 2.2.6.1.1 Sampler
 2.2.6.1.2 Proportioning pump
 2.2.6.1.3 Dialyzer
 2.2.6.1.4 Heating bath systems
 2.2.6.1.5 Colorimeter
 2.2.6.1.6 Recorder
2.3 Spectrophotometers
 2.3.1 Basic Principles
 2.3.1.1 Concepts
 2.3.1.2 Transmittance and absorption
 2.3.1.3 How are transmittance (T) and absorption (A) Quantities?
 2.3.1.4 Experimental Procedure
 2.3.2 Component Parts
 2.3.2.1. Light Source
 2.3.2.2. Monochromatic
 2.3.2.3. Sample Holder
2.3.2.4. Detector and Readout Device 25

2.3.2.5. Incubation system 27
 2.3.2.5.1 Description of the system 27
 2.3.2.5.2 Component of incubation system 28

2.3.3 The effort has been focused on three areas 28

2.4. International Standard Organization (ISO 15189) 29

2.5. Calibration 30
 2.5.1 Report calibration 30
 2.5.2 Limit tolerance calibrations 30
 2.5.3 Calibration Requirements 31
 2.5.4 What Is Spectrophotometer Calibration? 32

CHAPTER THREE

Literature Review 34

CHAPTER FOUR

Materials and Methods 40

4.1. Materials 40
 4.1.1. Neutral density filter 40
 4.1.2. Thermometer 41
 4.1.3. Transmissometer 42

4.1.4 Data analysis 43

4.2 Methods 43
 4.2.1 Filters adjust and calibrate 43
 4.2.1.1 How to calibrate filters? 43
4.2.1.2 Procedure

4.2.2 Temperature adjust and calibrate
4.2.2.1 How to calibrate temperature?
4.2.2.2 Procedure

4.2.3 Lamp adjust and calibrate
4.2.3.1 How to calibrate lamp

CHAPTER FIVE

Results and discussions

5.1. Questionnaire for Calibration Spectrophotometer
5.1.1 Figures and discuss data of collected from questionnaire
5.2. Filters calibrations used (ND) Filter
5.2.1. Figure of calibrations filter 340 nm
5.2.2. Figure of calibrations filter 405 nm
5.2.3. Figure of calibrations filter 505 nm
5.3 Figures of calibrations temperatures used thermometer
5.3.1 Figure of calibration temperature 25°C
5.3.2 Figures of calibration temperature 37°C
5.4. Figures of calibrations lamp used Transmissometer
5.4.1 Lamp adjusted without filter
5.4.2 Lamp adjusted in filter 340nm
5.4.3 Lamp adjusted in filter 405nm
5.4.4 Lamp adjusted in filter 505nm

CHAPTER SIX
<table>
<thead>
<tr>
<th>Sections</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusions and Recommendations</td>
<td>101</td>
</tr>
<tr>
<td>6.1. Conclusions</td>
<td>101</td>
</tr>
<tr>
<td>6.2. Recommendations</td>
<td>102</td>
</tr>
<tr>
<td>References</td>
<td>105</td>
</tr>
</tbody>
</table>
APPENDIX A, Distributions of laboratories in Khartoum State
APPENDIX B, Block diagram of spectrophotometers
APPENDIX C, Tables of calibration
APPENDIX D, Thermostatization adjust and currents
 accuracy of the lamp
APPENDIX E, Reading tools calibration in filters
APPENDIX F, Reading tools calibration in filter 340nm
APPENDIX G, Reading tools calibration in filter 405nm
APPENDIX H, Reading tools calibration in filter 505nm
APPENDIX I, Reading tools calibration for reading lamp
APPENDIX J, Reading tools calibration for reading Temperature
APPENDIX K, Neutral Density Filter (ND filter)
APPENDIX L, Temperature adjusts with thermometer
APPENDIX M, Lamp adjusts and calibrate
List of Tables

Table 4.1	Data of filter calibration (KIT No: F-2518)	41
Table 4.2	Data of temperature calibration	42
Table 4.3	Currents for the Lamp Test Maximum: 172 nA Minimum: 10 nA	43
Table 5.1	Illustrates the answer of did you buy your instrument according to specifications?	52
Table 5.2	Illustrates the answer of who installed it	53
Table 5.3	Illustrates the answer of the installation process was performed by Bio-medical engineer?	54
Table 5.4	Illustrate the answer of environment stability achieved.	55
Table 5.5	Illustrates the answer of did you verify manufacture claim?	56
Table 5.6	Illustrates the answer of did the user operate the instrument?	57
Table 5.7	Illustrates the answer of time is maintenance process is usually done?	58
Table 5.8	Illustrates the answer of prior to use unless it comes with a calibration certificate.	59
Table 5.9	Illustrates the answer of Calibration Process is done by?	60
Table 5.10	Illustrates the answer of used calibrations material.	61
Table 5.11	Illustrates the answer of area Calibration Site.	62
Table 5.12	Illustrates the paired sample statistics test at (cal1) in filter 340nm before and after calibration	65
Table 5.13	Illustrates paired sample test (cal1) in filter 340nm before and after calibration	65
Table 5.14	Illustrates the paired sample statistics test at (cal2) 340nm before and after calibration	67
Table 5.15	Illustrates paired sample test (cal2) in filter 340nA before and after calibration	67
Table 5.16	Illustrates paired sample statistics test at (cal3) 340nm before and after calibration	69
Table 5.17	Illustrates paired sample test (cal3) in filter 340nm before and after calibration	69
Table 5.18	Illustrates paired sample statistics test at (cal4) 340nm before and after calibration	71
Table 5.19	Illustrates paired sample test (cal4) in filter 340nm before and after calibration	71
Table 5.20	Illustrates paired sample statistics test at (cal1) 405nm before and after calibration	73
Table 5.21	Illustrates paired sample test (cal1) in filter 405nm before and after calibration	73
Table 5.22	Illustrates paired sample statistics test at (cal2) 405nm before and after calibration	75
Table 5.23	Illustrates he paired sample test (cal2) in filter 405nm before and after calibration	75
Table 5.24	Illustrates paired sample statistics test at (cal3) 405nm before and after calibration	77
Table 5.25	Illustrates paired sample test (cal3) in filter 405nm before and after calibration	77
Table 5.26	Illustrates paired sample statistics test at (cal4) 405nm before and after calibration	79
Table 5.27	Illustrates paired sample test (cal4) in filter 405nm before and after calibration	79
Table 5.28	Illustrates paired sample statistics test at (cal1) 505nm before and after calibration	81
Table 5.29	Illustrates paired sample test (cal1) in filter 505nm before and after calibration	81
Table 5.30	Illustrates paired sample statistics test at (cal2) 505nm before and after calibration	83
Table 5.31	Illustrates paired sample test (cal2) in filter 505nm before and after calibration	83
Table 5.32	Illustrates paired sample statistics test at (cal3) 505nm before and after calibration	85
Table 5.33	Illustrates the paired sample test (cal3) in filter 505nm before and after calibration	85
Table 5.34	Illustrates paired sample statistics test at (cal4) 505nm before and after calibration	
Table 5.35	Illustrates the paired sample statistics (cal4) in filter 505nm before and after calibration	
Table 5.36	Illustrates the paired sample statistics test of (t1) at 25cO before and after calibration	
Table 5.37	Illustrates the paired sample test temperature (t1) at 25cO before and after calibration	
Table 5.38	Illustrates the paired sample statistics test of (t2) at 37cO before and after calibration	
Table 5.39	Illustrates the paired sample test temperature (t2) at 37cO before and after calibration	
Table 5.40	Illustrated the paired sample statistics reading of (L1) without filter before and after calibration	
Table 5.41	Illustrated the paired sample test reading adjust (L1) without filter before and after calibration	
Table 5.42	Illustrates the paired sample statistics reading (L1) at filter 340nm before and after calibration	
Table 5.43	Illustrates the paired sample test reading (L1) in filter 340nm before and after calibration	
Table 5.44	Illustrates the paired sample statistics reading (L3) in filter 405nm before and after calibration	
Table 5.45	Illustrates the paired sample test reading (L3) in filter 405nm before and after calibration	
Table 5.46	Illustrates the paired sample statistics reading (L4) at filter 505nm before and after calibration	
Table 5.47	Illustrates the paired sample test reading (L4) in filter 505nm before and after calibration	
List of Figures

Figure 2.1 Block diagram of a colorimeter 9
Figure 2.2 Block diagram of a spectrophotometer 10
Figure 2.3 Block diagram of (a) flame emission and (b) flame absorption 11
Figure 2.4 Block diagram of a fluorometer 12
Figure 2.5 The block diagram of Auto Analyzer 14
Figure 2.6 Is a general block diagram for a spectrophotometer 16
Figure 2.7 transmitted light throw cuvette 18
Figure 2.8 A- Halogen lamp, b-tungsten-filament 22
Figure 2.9 Glass filters 23
Figure 2.10 Light dispersion by a prism 24
Figure 2.11 Diffraction gratings 24
Figure 2.12 Cuvettes or flow cells 25
Figure 2.13 photo cells or photodiode 26
Figure 2.14 Photo-Multiplier Tube 26
Figure 2.15 The incubation system 28
Figure 4.1 Reference materials (Neutral Density Filter, Thermometer and Transmissometer) 40
Figure 4.2 Tools calibration Neutral Density Filter (ND filter) 40
Figure 4.3 Thermometer and Adjusted thermal sensor 41
Figure 4.4 Transmissometer and - Adjusted photodiode sensor 42
Figure 4.5 Adjusting filters in spectrophotometer 44
Figure 4.6 Adjusting temperatures in spectrophotometer 49
Figure 4.7 Adjusting Lamp in spectrophotometer 50
Figure 5.1 Illustrates answer of did you buy your instrument according to specifications? 53
Figure 5.2 Illustrates answer of who installed it 54
Figure 5.3 Illustrates answer of the installation process was xii
performed by Bio-medical engineer?

Figure 5.4 Illustrates the answer of environment stability achieved.

Figure 5.5 Illustrates the answer of did you verify manufacture claim?

Graph 5.6 Illustrates the answer of did the user operate the instrument?

Figure 5.7 Illustrates the answer of time is maintenance process is usually done?

Figure 5.8 Illustrates the answer of prior to use unless it comes with a calibration certificate.

Figure 5.9 Illustrates the answer of Calibration Process is done by?

Figure 5.10 Illustrates the answer of used calibrations material.

Figure 5.11 Illustrates the answer of area Calibration Site.

Figure 5.12 Illustrates the reading of instruments at (cal1) 340nm before calibration

Figure 5.13 Illustrates the reading of calibrated instruments at (cal1) 340nm after calibration

Figure 5.14 Illustrates the reading of instruments at (cal2) in filter 340nm before calibration

Figure 5.15 Illustrates the reading of calibrated instruments at (cal2) in filter 340nm after calibration

Figure 5.16 Illustrates the reading of instruments at (cal3) 340nm before calibration

Figure 5.17 Illustrates the reading of calibrated instruments at (cal3) 340nm after calibration

Figure 5.18 Illustrates the reading of instruments at (cal4) 340nm before calibration

Figure 5.19 Illustrates the reading of calibrated instruments at (cal4) 340nm after calibration

Figure 5.20 Illustrates the reading of instruments at (cal1) 405nm before calibration
Figure 5.21 Illustrates the reading of calibrated instruments at (cal1) 405nm after calibration

Figure 5.22 Illustrates the reading of instruments at (cal2) 405nm before calibration

Figure 5.23 Illustrates the reading of calibrated instruments at (cal2) 405nm after calibration

Figure 6.24 Illustrates the reading of instruments at (cal3) 405nm before calibration

Figure 5.25 Illustrates the reading of calibrated instruments at (cal3) 405nm after calibration

Figure 5.26 Illustrates the reading of instruments at (cal4) 405nm before calibration

Figure 5.27 Illustrates the reading of calibrated instruments at (cal4) 405nm after calibration

Figure 5.28 Illustrates the reading of instruments at (cal1) 505nm before calibration

Figure 5.29 Illustrates the reading of calibrated instruments at (cal1) 505nm after calibration

Figure 5.30 Illustrates the reading of instruments at (cal2) 505nm before calibration

Figure 5.31 Illustrates the reading of calibrated instruments at (cal2) 505nm after calibration

Figure 5.32 Illustrates the reading of instruments at (cal3) 505nm before calibration

Figure 5.33 Illustrates the reading of calibrated instruments at (cal3) 505nm after calibration

Figure 5.34 Illustrates the reading of instruments at (cal4) 505nm before calibration

Figure 5.35 Illustrates the reading of instruments at (cal4) 505nm after calibration

Figure 5.36 Illustrates the reading of instruments temperature (t1) at 25°C before calibration

Figure 5.37 Illustrates the reading of calibrated instruments temperature (t1) at 25°C after calibration
Figure 5.38 Illustrates the reading of instruments temperature (t2) at 37°C before calibration

Figure 5.39 Illustrates the reading of calibrated instruments temperature (t2) at 37°C after calibration

Figure 5.40 Illustrates the reading of instruments adjusted lamp (L1) without filter before calibration

Figure 5.41 Illustrates the reading of calibrated instruments adjusted lamp (L1) without filter after calibration

Figure 5.42 Illustrates the reading of instruments adjusted lamp (L2) at filter (340) before calibration

Figure 5.43 Illustrates the reading of calibrated instruments adjusted lamp (L2) at filter 340nm after calibration

Figure 5.44 Illustrates the reading of instruments adjusted lamp (L3) at filter 405nm before calibration

Figure 5.45 Illustrates the reading of calibrated instruments adjusted lamp (L3) at filter 405nm after calibration

Figure 5.46 Illustrates the reading of instruments adjusted lamp (L4) at filter (505) before calibration

Figure 5.47 Illustrates the reading of calibrated instruments adjusted lamp (L4) at filter 505nm after calibration
Abstract

The aim of this study is to evaluate the efficiency and calibration of laboratories, spectrophotometers according to the specification (ISO 15189) and depending on the conditions (4.2.5 and 5.3.2) included in the items of laboratory equipment.

At the beginning, structured questioner was conducted to assess the technician’s awareness of instruments calibration. The practical results were analyzed by using Statistical package for social service (SPSS 15).

The study was applied on 40 spectrophotometers, which were calibrated by using special tools to show: the efficiency of filters to light, the severity of an accurate light degree and the ability of instrument to reach a temperature between (25±0.2°C and 37± 0.2°C) and which has a direct impact on clinical readings of instruments.

The analysis procedure showed that a significant improvement (by 100% and p > 0.05) in results after calibration, which was evaluated by using the probability of obtaining a test statistic (p-value) in T test, for example the obtained results before calibration: in filter 340 nm(P < 0.012) with percentage average 43.9%, the temperature within range 25±0.2°C (P < 0.001) with percentage average 8.3%, the temperature within 37± 0.2°C (P < 0.001) with percentage average 0.00%, and the degree of an accurate lamp without a filter 172 nA (P < 0.001) with percentage average 30.8%, which leads to conclude that a process of calibration of instruments must be performed at frequent intervals due to its importance in enhancement the clinical results.
الهدف من هذه الدراسة تقييم كفاءة ومعايرة أجهزة الطيف الضوئي بالمعامل وفقاً لمواصفة (ISO-15189) لمنظمة المعايير الدولية اعتماداً على الشروط (4.2 و 5.3.2) المضمنة في بنود أجهزة المعامل.

وقد أجريت الدراسة على عدد (40) جهاز طيف ضوئي بعد اجراه استبان لتقنية المعامل، وكان الرؤف العام منها تقييم مدى معرفة التقنيين بأسس معايير الأجهزة وخصوصاً كفاءة مرشحات الضوء، وشدة استضاءة المصباح درجة ومقدرة الجهاز للوصول لدرجة حرارة بين (±0.25° و ±0.2° C) وذك لاهتمامها المباشرة على تغيير قراءات الأجهزة.

في البدء تم جمع البيانات قبل وبعد إجراء المعایرة، وتم تحليلها باستخدام برنامج التحليل الإحصائي (SPSS-15)، وأظهرت نتيجة التحليل فرقاً تحسناً بنسبة 100% (p > 0.05) بعد المعایرة باستخدام الفرق في القيمة الاحتمالية للنسبة الموضوعة في الاختبار (p-value) وعلى سبيل المثال بعض النتائج قبل المعایرة: للمراحل (340 nm، والنتائج المماثلة له) 8.3% ودرجة الحرارة في درجة ±0.2° C (P < 0.001) والنتائج المماثلة لها (37 nm، والنتائج المماثلة له) 0.00% ودرجة استضاءة المصباح بدون فلتر 172 0.001 < (P < 0.001) مما استوجب اقتراح أن يتم عملية المعایرة على الأجهزة في فترات محددة ومتقاربة نظر للتغيرات البيئة والتذبذب في التيار الكهربائي في السودان، مما يؤثر سلباً في تغيير النتائج الطبية المستخرجة بهذه الأجهزة.