Dedication

This thesis is dedicated to my wonderful parents, who encourage me to work hard and to respect the others. They help me in every stage in my study through good and bad times, thanks to all brothers, sisters and friends for my assistance. I really appreciate your roles for helping me to success and install the confidence in me that I became capable to do anything in my mind thank you for everything.
Acknowledgement

I would like to thank Dr. Ali Mohammed Seory, my supervisor, for his hard work and guidance throughout this entire thesis process and for giving me this opportunity. I have learned so much, and without him, this thesis will not be achievable. Thank so much for your great help. I would also like to thank Dr. Alkhawad Ali Alfaki whose steadfast supports of this research and I’m deeply appreciated. I would also like to thank Dr. Imad Elhadi, I would also like to thank my parent, thank you for all mates
Abstract

This research explains an analytical study for all variables that affect hydrodynamic bearing design, such as pressure, load, friction force, and oil film thickness. The objectives of this research are to calculate the hydrodynamic bearing variables, investigate the effect of shaft misalignment and oil film thickness on pressure distribution, and analyze and plot the results using a Matlab program. The study investigates deriving Reynolds' Equation, which controls the pressure distribution in the hydrodynamic bearing. This equation is a second-order differential equation, solved using the finite difference method, and Matlab is used for analyzing and plotting the results.
هذا البحث يوضح دراسة تفصيلية لكل المتغيرات التي تؤثر في تصميم المحامل الهيدروديناميكية مثل الضغط، الحمل، قوة الاحتكاك، وسمك طبقة التزيت. يهدف هذا البحث لحساب كل المتغيرات في المحامل الهيدروديناميكية. لتحقيق تأثير أنحراف العمود وسمك طبقة التزيت. دراسة Matlab لحساب كل المتغيرات في المحامل الهيدروديناميكية وتم محاولة تحليل وتخطيط النتائج باستخدام برنامج Matlab.

تتحقق من نتائج متغيرات رينولدز التي تتحكم في توزيع الضغط في المحامل الهيدروديناميكية Finite وتم استخدام برنامج Matlab لتحليل وتخطيط النتائج.
Table of contents

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>II</td>
</tr>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>مستخلص</td>
<td>IV</td>
</tr>
<tr>
<td>Table of contents</td>
<td>V</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>VIII</td>
</tr>
<tr>
<td>List of figures</td>
<td>XI</td>
</tr>
</tbody>
</table>

Chapter one: Introduction

1.1 Introduction | 1 |
1.2 Project objective | 3 |
1.3 Methodology | 3 |
1.4 Thesis outline | 3 |

Chapter two : Dry and Boundary Lubrication Bearings

2.1 Preface | 4 |
2- 2 Boundary Lubrication Bearing | 4 |
2- 2- 1 Hydrostatic Bearing | 4 |
2-1-2 Hydrodynamic Bearing | 8 |

Chapter Three : Hydrodynamic and Hydrostatic Lubrication

3-1 Bearing Lubrication:- | 12 |
3-1-1 Hydrostatic lubrication | 12 |
3-1-2 Hydrodynamic lubrication | 14 |
3-2 Boundary lubrication 15
3-3 Hydrodynamic Bearing 15

3-3-1 Elements of Hydrodynamic Bearing (journal bearing) 15
3-3-2 Working Principle 16

Chapter four: Hydrodynamic Lubrication
4.1 Preface 19
4.2 Reynolds Equation 19
4.2.1 Simplifying Assumptions 20
4.2.2 Equilibrium of an Element 20
4.2.3 Continuity of Flow in a Column 27
4.2.4 Simplifications to the Reynolds Equation 30
4.2.5 Unidirectional Velocity Approximation 30
4.2.6 Steady Film Thickness Approximation 30

Chapter five: Computational Hydrodynamic Bearing
5.1 Preface 32
5.2 Non-dimensionalization of The Reynolds Equation 33
5.3 The Vogelpohl Parameter 35
5.4 Finite Difference Equivalent of The Reynolds Equation 35
5.5 Definition of Solution Domain and Boundary Conditions 39
5.6 Calculation of Pressure Field 41
5.7 Calculation of Dimensionless Friction Force and Friction Coefficient 41
5.8 Matlab program 45
5.9 Numerical Solution Technique for Vogelpohl Equation 46
5.10 Matlab program flowchart 46
Chapter six : Results and Discussion

6.1 The Effect of Shaft Misalignment

6.1.1 Example of Data from Numerical Analysis, the Effect of Shaft Misalignment for journal bearing

6.1.2 Effect of misalignment on pressure profile for full-Sommerfeld 360°full arc bearing and a partial arc bearing

6.2.3 Effect of misalignment on pressure profile for half-Sommerfeld and 360° full bearing

6.2 Effect of misalignment on oil film thickness

6.3 Load Capacity

6.4 Case Study

Chapter seven : Conclusions Recommendations

7.1 Conclusion

7.2 Recommendation

References

Appendices
Nomenclature

\(h \) the hydrodynamic film thickness (m).

\(c \) the bearing radial clearance (m).

\(R \) the bearing radius (m).

\(L \) the bearing axial length (m).

\(P \) the pressure (Pa).

\(U \) the bearing entraining velocity (m/s), i.e. \(U = (U_1 + U_2)/2 \);

\(\eta \) the dynamic viscosity of the bearing (Pas).

\(x, y \) Are hydrodynamic film co-ordinates (m).

\(\tau_x \) The shear stress acting in the 'x' direction (Pa).

\(\tau_y \) The shear stress acting in the 'y' direction (Pa).

\(\tau_z \) the shear stress acting in the 'z' direction (Pa).

\(v \) the sliding velocity in the 'y' direction (m/s).

\(q_x, q_y \) are flow rate in, \(x \) , \(y \) direction

\(M_v \) Vogelpohl Parameter
h* the hydrodynamic dimensionless oil film thickness

P* Dimensionless pressure

x*, y* Are hydrodynamic dimensionless film co-or

List of figures

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure (2.1) Hydrostatic bearing system.</td>
<td>7</td>
</tr>
<tr>
<td>Figure (2.2) Hydrodynamic lubrication of plane-slider.</td>
<td>8</td>
</tr>
<tr>
<td>Figure (2.3) Hydrodynamic journal bearing</td>
<td>9</td>
</tr>
<tr>
<td>Figure (3.1) Flat circular pad bearing with a central recess</td>
<td>13</td>
</tr>
<tr>
<td>Figure (3.2) Principle of hydrodynamic pressure generation between nonparallel surfaces</td>
<td>14</td>
</tr>
<tr>
<td>Figure (3.3) typical construction of hydrodynamic bearing</td>
<td>16</td>
</tr>
<tr>
<td>Figure (3.4) metal to metal contact between shaft and bearing</td>
<td>16</td>
</tr>
<tr>
<td>Figure (3.5) Oil gets squeezed and boundary lubrication</td>
<td>17</td>
</tr>
<tr>
<td>Figure (3.6) Lubricant forms a boundary between shaft and sleeve.</td>
<td>18</td>
</tr>
<tr>
<td>Figure (4.1) Principle of hydrodynamic pressure generation between non-parallel surfaces</td>
<td>19</td>
</tr>
<tr>
<td>Figure (4.2) Equilibrium of an element of fluid from a hydrodynamic film</td>
<td>23</td>
</tr>
<tr>
<td>Figure (4.3) Velocity profiles at the entry of the hydrodynamic film</td>
<td>26</td>
</tr>
<tr>
<td>Figure (4.4) Continuity of flow in a column</td>
<td>28</td>
</tr>
</tbody>
</table>
Figure (4.5) A journal bearing slides along a rotating shaft.

Figure 5.1 Illustration of the principle for the derivation of the finite difference approximation of the first derivative of a function.

Figure (5.2) Illustration of the principle for the derivation of the finite difference approximation of the second derivative of a function.

Figure (5.3) Finite difference operator and nodal scheme for numerical analysis of the Reynolds equation.

Figure (5.4) Nodal pressure or Vogelpohl parameter domains for finite difference analysis of hydrodynamic bearings.

Figure (5.5) Matlab program flowchart.

Figure (6.1) Computed values of Sommerfeld number ‘Δ’ versus eccentricity ratio ‘ε’.

Figure (6.2) Effect of misalignment on maximum hydrodynamic pressure in a partial arc bearing.

Figure (6.3) Dimensionless pressure profile for full-Sommerfeld and 360° perfectly aligned full bearing.

Figure (6.4) Dimensionless pressure contour for full-Sommerfeld and 360° perfectly aligned full bearing.

Figure (5.5) Dimensionless pressure profile for full-Sommerfeld and 120° perfectly aligned partial arc bearing.

Figure (5.6) Dimensionless pressure contour for full-Sommerfeld and 120° perfectly aligned partial arc bearing.

Figure (6.7) Dimensionless pressure profile for full-Sommerfeld and 120° misaligned partial arc bearing.
Figure (6.8) dimensionless pressure contour for full-Sommerfeld and 120° misaligned a partial arc bearing

Figure (6.9) dimensionless pressure profile for full-Sommerfeld and 360° misaligned full bearing

Figure (6.10) dimensionless pressure contour for full-Sommerfeld and 360° misaligned full bearing

Figure (6.11) dimensionless pressure profile for half-Sommerfeld and 360° perfectly aligned full bearing

Figure (6.12) dimensionless pressure contour for half-Sommerfeld and 360° perfectly aligned full bearing

Figure (6.13) dimensionless pressure profile for the half-Sommerfeld 360° misaligned full bearing.

Figure (6.14) dimensionless pressure contour for the half-Sommerfeld 360° misaligned full bearing.

Figure (6.15) Computed oil film thickness profile for 360° perfectly aligned full bearing

Figure (6.16) Computed oil film thickness for 360° misaligned full bearing

Figure (6.17) oil film thickness for 120° to 240° misaligned partial bearing

Figure (6.18) dimensionless pressure field for 120° to 240° misaligned partial bearing.

Figure (6.19) dimensionless pressure contour for 120° to 240° misaligned partial bearing