Dedication

To whom she is departed but still and will stay life inside me (my mother)...

To my father who care me when I was a child and still care me ...

To my brothers and sisters who taught me the meaning of love and sacrifice ...

To all who around me and supported me ...

To all who I forgot to mention ...
ACKNOWLEDGMENT

All thanks to Allah; who helps us to do what we couldn’t do without his assistance. Also I am grateful to my supervisor Dr. Abd Alrasoul Gabbar Zubidi for his accuracy and valuable comments that he has made in every single chapter in this research and for his advice, support and encouragement.

I would like to thank the Center of Engineering Studies (CETS) family.

My families have not only given me a good atmosphere but also valuable suggestions for improving this work.

Finally, I would like to thank every one who has helped me to make this research come out. And special thanks to some one.
ABSTRACT

The main purpose of this research is the studying of design services for the process of pumping petroleum, includes sensors and which operates to measure both pressure and temperature and flow rate in the pipelines, automatically in order to keep the tube from (explosions) which occur due to high pressure

In this research controllers logical programmable (PLC) was used, which play a key role in various industrial fields; that is because of the advantage of its high accuracy and speed of response next to the high performance making it well-suited to deal with signals and rapid signals of sensors, as well as applications of signal analogue which control of the rate flow of liquid.

The controllers are programmable logical the essential which are part of the formation of electrical circuits in the industry and to its ability to reduce the components of the circle, because they contain a large number of relays and counters in addition to the timers in the form of programs. They also have the ability to deal with all types of media files between man and machine screen.

There are many advantages of logical controllers can be connected to the computer where to get more accurate follow ins-up of the machines, which helps to detect faults quickly.
تجديد

الغرض الأساسي من هذا البحث هو دراسة تصميم الأجهزة لعملية ضخ البترول ويشمل اجهزة الاستشعار (الحساسات) التي تعمل لقياس كل من الضغط ودرجة الحرارة ومعدل التدفق في الانابيب اليا من أجل الحفاظ على الأنبوب من (الانفجارات) التي تحدث بسبب الضغط العالي.

وفي هذا البحث استخدمت المُتحكمات المنطقية القابلة للبرمجة (PLC) والتي تلعب دورًا أساسيًا في مُختلف المجالات الصناعية، وذلك لما تمتاز به من دقة عالية وسرعة إستجابة بجانب الأداء العالي مما يجعلها مناسبة تماما للتعامل مع الإشارات السريعة كإشارات المتحسسات وكذلك تطبيقات الإشارات التماثلية كالتحكم في معدل التدفق لسائل مثلاً.

وتعتبر المُتحكمات المنطقية القابلة للبرمجة جزءًا أساسيًا من تكوين الدوائر الكهربائية في الصناعة وذلك لقدرتها على تقليل مكونات الدائرة، وذلك لأنها تحتوي على عدد كبير من المرحلات والعدادات بالإضافة للموقتات في شكل برمجي كما لها القدرة على التعامل مع كافة أنواع الوسائط بين الإنسان والآلة كالشاشات مثلاً.

والتحكمات المنطقية محسن كثيرة حيث يمكن توصيلها بالكمبيوتر للحصول على متابعة أدق الآلاة مما يساعد على اكتشاف الأعطال سريعاً.

تاء

IV
CONTENTS

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>II</td>
</tr>
<tr>
<td>Abstract</td>
<td>III</td>
</tr>
<tr>
<td>Abstract in Arabic</td>
<td>IV</td>
</tr>
<tr>
<td>Table of content</td>
<td>V</td>
</tr>
<tr>
<td>List of figures</td>
<td>VIII</td>
</tr>
<tr>
<td>List of tables</td>
<td>X</td>
</tr>
<tr>
<td>List of abbreviation</td>
<td>XI</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background | 1
1.2 Problem statement | 2
1.3 Objective | 2
1.4 Methodology | 2
1.5 Research Outlines | 3

CHAPTER TWO: LITERATURE REVIEWS

2.1 PLC Overview | 4
2.2 PLC History | 5
2.3 Components of a PLC system | 7
2.3.1 Central processing unit | 7
2.3.2 Inputs and Outputs | 8
2.3.3 Programming Software | 9
2.3.4 PLC Programming | 9
2.3.4.1 Ladder Logic | 10
2.3.4.2 Symbols Used In Ladder Diagram 11
2.3.4.3 Statement List 13
2.3.4.4 Sequential Function Charts (SFCs) 15
2.3.4.5 Function Block Diagram 15
2.3.4.6 Timers 16
2.3.4.7 On Delay (TON) 17
2.3.4.8 Retentive On Delay (TONR) 17
2.3.4.9 OFF Delay (TOF) 17
2.4 Counters 18
2.4.1 Up Counter 18
2.4.2 Down 19
2.4.3 Up Down Counter 19
2.4.4 Programming Unit 20
2.4.5 Power Supply 20
2.5 PLC Operation 21
2.6 Advantages Of PLC 22

CHAPTER THREE: HARDWARE DESIGN

3.1 Composition of Electrical Circuit Design 23
3.2 Dual Tone Multiple Frequency Signaling 23
3.3 Keypad Keys (#, *, A, B, C, and D) 25
3.4 Keypad 27
3.5 Special Tone Frequencies 28
3.6 System Component 29
3.7 Pulse Width Modulation (PWM) 31
3.8 PLC (Programmable Logic Control) 33
CHAPTER FOUR: SOFTWARE DESIGN

4.1 Ladder Language Overview 35
4.2 Software Design 35
4.2.1 Circuit Operation 35
4.2.2 Program Flow Chart 36
4.3 The Program 38
4.4 The Program in Statement List Language (SIL) 41
4.5 The Program in Function Block Language (FBD) 43

CHAPTER FIVE: RESULTS AND DISCUSSIONS

5.1 Results 46
5.2 Discussions 46

CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion 47
6.2 Recommendations 48
REFERENCES 49
APPENDIX 50
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Wireless automated Design For Petrol Pumping Process</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>A PLC</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Central Processing Unit</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Ladder Diagram</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Normally Open Contact</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Normally Closed Contact</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Energies Coil</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Box Represent Function</td>
<td>13</td>
</tr>
<tr>
<td>2.8</td>
<td>Statement List Example</td>
<td>14</td>
</tr>
<tr>
<td>2.9</td>
<td>Function Block Diagram Example</td>
<td>16</td>
</tr>
<tr>
<td>2.10</td>
<td>ON-Delay Timer (TON)</td>
<td>17</td>
</tr>
<tr>
<td>2.11</td>
<td>Retentive ON-Delay (TONR)</td>
<td>17</td>
</tr>
<tr>
<td>2.12</td>
<td>OFF-Delay Timer (TOF)</td>
<td>18</td>
</tr>
<tr>
<td>2.13</td>
<td>UP Counter (CUP)</td>
<td>18</td>
</tr>
<tr>
<td>2.14</td>
<td>Down Counter (CTD)</td>
<td>19</td>
</tr>
<tr>
<td>2.15</td>
<td>UP/Down Counter (CTUD)</td>
<td>19</td>
</tr>
<tr>
<td>2.16</td>
<td>Programming Unit</td>
<td>20</td>
</tr>
<tr>
<td>2.17</td>
<td>PLC Operation</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>DTMF Decoder</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Photos Of DTMF Circuit buit</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Pulse Width Modulation (PWM)</td>
<td>32</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.4</td>
<td>Block Diagram of the System</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow Chart</td>
<td>37</td>
</tr>
<tr>
<td>4.3</td>
<td>Circuit Program by Ladder Logic</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Circuit Program by Statement List</td>
<td>41</td>
</tr>
<tr>
<td>4.5</td>
<td>Circuit Program by Function Block</td>
<td>43</td>
</tr>
<tr>
<td>Tables</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>DTMF Keypad frequencies (with sound clips)</td>
<td>28</td>
</tr>
<tr>
<td>3.2</td>
<td>Frequency determine status of line</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Material of DTMF Circuit</td>
<td>30</td>
</tr>
<tr>
<td>3.4</td>
<td>Output logic behavior from the DTMF decoder IC</td>
<td>31</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC</td>
<td>Programmable logic Controller</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control And Data Acquisition</td>
</tr>
<tr>
<td>HMI</td>
<td>Human Machine Interface</td>
</tr>
<tr>
<td>MODICON</td>
<td>Modular Digital Controller</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>N.O</td>
<td>Normally Open Contact</td>
</tr>
<tr>
<td>N.C</td>
<td>Normally Closed Contact</td>
</tr>
<tr>
<td>MAP</td>
<td>Manufacturing Automation Protocol</td>
</tr>
<tr>
<td>PID</td>
<td>Proportional- Integral-Derivative</td>
</tr>
<tr>
<td>IEC</td>
<td>International electronic commission</td>
</tr>
<tr>
<td>ESD</td>
<td>Emergency Shutdown</td>
</tr>
<tr>
<td>A-B</td>
<td>Allen Bradly</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Differential Transformer</td>
</tr>
<tr>
<td>STL</td>
<td>Statement List</td>
</tr>
<tr>
<td>SFC</td>
<td>Sequential Function Chart</td>
</tr>
<tr>
<td>FBD</td>
<td>Function Block Diagram</td>
</tr>
</tbody>
</table>

Xi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>Light Emitting Diodes</td>
</tr>
<tr>
<td>LCD</td>
<td>Liquid Crystal Display</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Electrical Manufacturers Association</td>
</tr>
<tr>
<td>DTMF</td>
<td>Dual Tone Multi Frequency</td>
</tr>
<tr>
<td>CCITT</td>
<td>Consultative Committee for International Telephone and Telegraphy</td>
</tr>
<tr>
<td>MF</td>
<td>Multi-Frequency</td>
</tr>
<tr>
<td>dB</td>
<td>decibels</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>CPLD</td>
<td>Complex Programmable Logic Device</td>
</tr>
</tbody>
</table>