ABSTRACT

The Global Positioning System (GPS) derived-heights have no relationship to the geopotential surface of the Earth's gravity field because it is referenced to a geocentric ellipsoid. There is a need to refer heights to the gravity field, in most cases, for the determination of the fluid flows. To convert GPS-derived ellipsoidal heights (h) to orthometric heights (H), it is necessary to use a geoid model (N).

This study describes the development of gravimetric geoid model referred to WGS84 reference surface for the study area. Three different approaches for geoid determination have been studied. In the first approach; a gravimetric geoid model is constructed using: the observed gravity anomaly, the Global Geopotential Models (GGM) gravity anomaly and the digital elevation models (DEM). In the second approach; the GPS-derived ellipsoidal heights (*h*) and precise levelling data are used together to obtain the geometric geoid. In the third approach a combination of the gravimetric method and the geometric method is used to establish the hybrid geoid.

A number of data files were compiled for this work, containing more than 25,500 gravity point data. Global geopotential models were used to determine the long wavelength effect of the geoid surface. The GGMs contributions were evaluated with GPS/levelling data to choose the best one to be used in the combined formula.

Gridding algorithms (*Kriging, Inverse Distance Weighting, Nearest Neighbor and Polynomial Regression*) are used to obtain a regular data grid. Corrector surface (CS) for conversion of GPS height (h) to orthometric height (H) is created. EGM96 global geopotential model up to degree and order 360 and EGM08 global geopotential model up to degree and order 360 were tested to choose the best one fitting the study area. EGM96 is chosen as a reference model for the gravimetric geoid. An additive correction is calculated by the summation of four corrections, the Down Ward Continues effect (N_{DWC}), the terrain correction (N_{TC}), the atmospheric correction (N_{ATM}) and the ellipsoidal correction (N_e). The new gravimetric geoid (SDG2011) has been tested usig 18 GPS/levelling points. The overall accuracy is **26** cm.

From the available 128 GPS/Levelling data laid in the Northern part of the study area, 113 GPS/Levelling stations out of 128 were used to construct the *geometric geoid* model (N_{geom}) and the remaining points used for checking purpose. The gravimetric and the geometric geoid were combined to obtain the hybrid geoid model. The results show that the hybrid geoid is best of all since it gives standard deviation about **22** cm while the gravimetric and the geometric geometric geometric geometric present standard deviations about **26** cm and **24** cm respectively.

Looking for more precision, the area of study is subdivided into three zones, according to the density of the data, to overcome the ill distribution of the GPS/Levelling data. The standard deviation in the North-West (empty zone) remains the same while the accuracy in the other two zones increased. The North-East zone presents standard deviation about **12** cm and Central zone shows about **19** cm.

الارتفاعات التي يتم الحصول عليها بذ ظام تحديد الموا قع العالمي (GPS) لَيْسَت لَها علاقةُ بسطح الجهد لم قل جاذبية الأرضَ لأنها مُرجَعةُ إلى مجسم القطع الناقص من مركز الأرض. هنك حاجة لتحويل هذه الأرتفعات إلى مقل الجاذبيةَ الارضية في أكثر الحالات، لتصميم تدفق السوائل. لتحويل الارتفاع (h) المنسوب للسطح للاهليليجي إلى الارتفاع الاورثومترى (H) المنسوب الى متوسط سطح البحر (MSL) لابد من معرفة سطح الجيويد (N).

تَصفُ هذه الدراسة تطويرَ نموذج جيو يد محسوب من الجاذبية الارضية لمنط قة الدراسة المنَسوب للسطحَ المرجعي WGS84. تم دراسة ثلاث طرق مختلفة لتصميم الجيويد. الطريقة الأولى هي طريقة الجاذبية وفيها يتم الحصول على نموذج الجيويد بإستعمال شذوذ ألجاذبية المرصودة، النماذج العالمية للجهد (GGM) ونماذج الإرتفاع الرقمية (MEM). الطريقة الثانيةهي الطريقة الهندسية وفيها يتم استخدام الارتفاع الاهليجي (أ) وبيانات الميزانيةَ الدقيقة ال) للحُصُول على الجيويد الهندسي. في الطريقة الثالثة يتم فيها دمج الطريقة الاولى والثانية للحصول على نموذج للجيويد جديم سينا المريقان الثارة الهجين.

تم جمع عدد من الملفات والبيانات لهذا العمل، تحتوي على أكثر من 25,500 بيان ن قطة جاذبيةَ- نماذج الجهد العالمية (GGM)- بيانات نظام تحديد المواقع العالمي وبيانات الميزانيَة الدقيقة. تم استخدام الخوارزميات للحُصُول على شبكة بيانات منتظمة. تم اختيار EGM96 للحصول على جيويد منسوب للجاذبية لمنطقة الدراسة. تم حسّاب تصحيح مضاف مكون من أربعة تصحيحات، أسفل الرد هة المستمرُ، تصحيح التضاريسَ ، التصحيح الجوِّيَ والتصحيح الاهليليجي.تم الحصول على الحيويد الجد يد (SUDG2011) بد قة عامة تساوى 26 سنتميتر

منْ البيانات المتوفره من نظام تحديد المواقع العالمي في الجزء الشمالي لمنطقة الدراسة، تَم بِناء نموذج جيويدَ هندسي باستخدام 113 نقطة وتم استخدام عددَ 12 نقطة لغرض التدقيق. ثم تم دمج الجيويد الهندسي مع جيويد الجاذبية للمُ صُول على نموذج هجين. تظهر النتائج بأنّ الجيويد الهجين أفضل حيث أنه يُعطي إنحراف معياري حوالي 22 سنتيمترَ بينما كل من جيويد الجاذبية و الجيويد الهندسي تع على إنحرا فات معياري دوالي 26 26 سنتيمترَ و 24 سنتيمترَ على التوالي.

للبَحْثِ عن الدقّة الأكثر،تم تقسيم منطقة الدراسة إلى ثلاث مناطق، طبقاً لكثافة البيا نات وللتَغَ لُب على التوزيع الغيرمة ساوى لبيا ناتَ نَ ظام تحديد المواقع العالمي وبيا ناتَ الميزاذية الدقيقة.بعداً عادة حساب الجيويد لكل منطقة على حدا نجد ان الإنحراف المعياري في المنطقة الشمالية الغربية (منطقة فارغة)يَبْقى بدون تغيير بينما الدقة في المنطقتين الأخريتين زادتًا تُقدّم المنطقة الشمالية الشرقية إنحراف معياري حوالي 12 سنتيمتر و المنطقة المركزية حوالي 19 سنتيمتر.

ACKNOWLEDGEMENT

Firstly I am deeply indebted to my supervisor Dr. Khlafallah M. Badi for his invaluable intellectual guidance, professional discussions and advices, patience, flexibility and availability lead to the successful end of this study. I feel honored to have him as my supervisor. I am also very grateful to Dr. Ali H. Fagir and Dr. Mohammed Khalid for owning me the first knowledge in geodesy and physical geodesy.

I am deeply indebted to Mr. Abdalla Ahmed, who has been very helpful with many records and references. I sincerely thank all my former and present staff members and graduate students at the Survey Department, Division of Geodesy for the discussions we had and many other issues, which cannot be listed here all.

I am indebted to individuals and institutions which provided me either with data, computer software or information, especially *Bureau Gravimétrique International* (BGI) for providing 12,306 gravity observations , Feisal Mustafa , Potrodar company Lt. , for his assistance with gravity data in Western Sudan and Dam Implementation Unit (DIU) for providing GPS/levelling observations in Merowe in 2007. I sincerely thank my family and relatives for the inspirational moral support and encouragement, especially my dear wife and my children.

I greatly appreciate the support of my employer, Sudan University of Science and Technology, who provided me with the opportunity to undertake this research. Specific credit needs to be given to Dr. Nagy Zomrawe who initially persuaded me to start this project and gave me excellent suggestions.

TABLE OF CONTENTS

Abstract	 	 	
i			
Acknowledgements	 	 	
iv			

Table					of
contents					
V					
List					of
Tables					
ix					
List					of
Figures					
xi					
List		of		Ab	reviations
List	of Sv	mbols		XIV	
	xv	i		1	
Chapter 1	One:			Intr	σαυςτιση
1.1	Back	grour	nd		
1.2	Geoid	model			
1 2	3 Ob	iactivos	of	the	thosis
				ule	LIESIS
1.4	Metho	odology			
1.5	Thesis	structu	re		
Chanter		Hoight	System	5	
	8	neight	System	3	
2.1 Intro	duction				
2.2 Geop	otential	n	umbers		
23 Grav	8 /it/				
9	ily			•••••	
2.3.1	Gravity			0	
acmition.		• • • • • • • • • • • • • • • •	•••••	9	

2.3.2Corrections		for
2.4 Height	12	Systems
2.4.1Dynamic heights	 	
12		
2.4.2 Orthometric		
heights	13	
2.4.3Helmert		orthometric
heights14		
2.4.4Neithammer		orthometric
heights15		
2.4.5Mader		orthometric
heights16		
2.4.6Normal		
heights	17	
Charter Three Algerithmen and	Matha	Jalams far

Cna	pter inree:	Algorit	nms	and	Methodolog	ду тог
	Con	nbined				Height
	Adju	ustment				
	18					
3.1 18	Introduction					
3.2	Combined					height
adju	ustment			18	3	
	3.2.1Introduct	ion				
	3.1.2Role	of		the	para	ametric
mod	lel		.18			
3.3	Geoid mode	eling tec	hniqu			
	.19	-	-			
	3.3.1 Intro 19	duction				
	3.3.2Factors .20	affecting	mode	elling.		

3.3.3 Interpolation methods...... 20 3. 3.3.1 Inverse Distance Weighting (IDW).....21 3. 3.3.2 Geostatistical *Kriging......23* 3. 3.3.3 Nearest Neighbor......23 3. 3.3.4 Polynomial Regression.....24 3.3.4The mathematical models......25 Chapter Four Gravimetric geoid computation and Stokes's methods integral..... 27 4.1 Introduction..... 27 4.2 Vertical datum.....28 4.3 Geoid and quasigeoid.....29 4.4 Modification of Stokes' formula..... 4.5 Stokes integral and 4.6 Truncation of Stokes's 4.7 Global Geopotential Models (GGMs)..... 4.8 Selection of geoid modeling parameters......40

4.9 Gravimetric methods	geoid 40		computation
4.9.1 Introduction. 4.9.2Remove	-Compute-Restore	5	40 (RCR)
method	41		
4.9.2.1	Quasi-geoid by	/ Residual	Terrain Model
(RIM)41			
4.9.2.2	Heimert's	second	condensation
method	42		
4.10 Ine		40	additive
correction			
4.10.1	Downward Co	ntinuation	Effect (N _{dwc})
43	3		
4.10.2	The (Combined	Topographic
Correction	44		
4.10.3	The Atmosph	eric Corr	ection (N _{ATM})
	4 -		
	45		
4.10.4		The	ellipsoidal
Correction		.45	·
4.11		Geomet	ric geoid
determination		46	5
4.11.1			
Introduction			46
4.11.2			Computation
method		47	
4.12	Tł	ne Hvb	orid aeoid
determination			Jeen Jeen
Chapter	Five		Data
Acquisition		49	
5.1 Gravity			in
Sudan	Surv	/eys /0	
5.2 Gravity			
anomally			50
5 2 1 Normal			
aravity		50	
gravity			

5.2.	2Free		51	air
5 2	3Bouquer			
correctio	n		53	
5.3 Obs	erved			terrestrial
aravitv			54	
5.4 Gra	vitv	data	validation	and
ariddina.			Vandation	and
5.4.	1Gravity			
validatio	n		54	
5.4.	2Gravity			data
ariddina			56	
·		.		
5.5 Glo	oal	Geopotential		Models(GGM)
	•••••	56		
_ 5.5.	1			
Backgrou	und		•••••	
5.5.	2		5.0	lypes of
GGM	 	Satallita anly	58	
CCMc	5.5.2.1	58		
001415	5522 (Combined		
GGMs	J.J.Z .Z	59		
001151111	5.5.2.3	Tailored GGMs		
59				
5.6 Sate	ellite			Gravity
Missions.			60	-
5.6.	1			
CHAMP				60
5.6.	2			
GRACE	~			.60
5.6.	3			C1
GUCE	101			.01
5.7 USU	J91			
58 FGN	106			62
5.9	1.50			02
EGM2008	3			63

5.10 GPS/I	_evelling			62	
Chapter Analysis 6.1	six:	Corr 65	putations	and	Results
Introductic 6.2 Gravi determina 6.2.1 66	on metric tion Gravity da	ta	6	6	65 geoid
arovity	6.2.1.1	66	Obse	erved	terrestrial
gravity	6.2.1.2	00		GGM's	gravity
data 6.2.2	Gravity	67	1		data
gridding 6.2.3	Evaluation	of	68 G(} GM's	gravity
data 6.2.4	Gravity	70			data
validation. 6.2.5	The	Digital	Elevatior	n Moc	lel (DEM)
6.2.6	Evaluation	of	the ir	ntegral	(Stokes')
6.2.7 model	External 82	accuracy	of the	gravim	etric geoid
6.3 Geon determina 6 3 1	netric tion			89	geoid
Introductio	on			8	39
6.3.2 data			80	G	PS/Levelling
6.4 deoid			09	The 97	Hybrid
6.5	G area	eoid b	y portio	ning t .00	the study

6.5.1			
Introduction			10
0			
6.5.2		The	central
zone	100		
6.5.3		The	North-East
zone	100		
6.5.4		The	North-West
zone	101		
Chapter Seven	C	Conclusi	on and
Recommendations	105		
7.1			
Conclusion		1	L05
7.2			
Recommendations			109

LIST OF TABLES

Global geopotential models that are Table (4.1): presented in this research (S: Satellite, G: Gravity, A: Altimetry, Tide-free: all tidal effects have been removed) Table (5.1): Physical and geometrical constants of GRS80 in used gravity reductions.....52 **Table (6.1):** Statistics of the four gridding methods applied to the observed gravity anomalies for Sudan, (Unit: mGal) Table (6.2): Statistics of the differences between the three GGM's gravity anomalies extracted from (EGM96), (OSU91a) and (GGP Japan) and the observed gravity anomaly (dg Obs) in Sudan, (Units: mGal).....71 **Table (6.3):** The coefficients of 10-Parameter model fitting additive correction (N_{AC}) for the the qeoid. new

Table (6.5):Differences between GPS/Levelling and the
geoid

model.....

.....84

Tabel (6.16): Latitude, Longitude in WGS84, GPS/levelling geoid height (N_{qps}) and EGM96 geoid (N_{96}) and the geometrical geoid (N_{geom})......96 Tabel (6.17): Latitude, Longitude in WGS84, GPS/levelling geoid height (N_{qps}) and the difference $(N_{qps} - N_{geom})$ Table (6.18): Residuals between GPS/Levelling geoid and derived the three aeoid for North Sudan: Table (6.19): Statistical analysis of absolute accuracy of the three derived geoid for North Sudan: The gravimetric, the the aeometric and Hvbird aeoid..... 99 Tabel (6.20): Latitude, Longitude in WGS84, GPS/levelling geoid height (N_{qps}) and EGM96 geoid (N_{96}) and the gravimetric geoid (N_{ar}) for the North-East part of Sudan......103 Tabel (6.21): Latitude, Longitude in WGS84, GPS/levelling geoid height (N_{gps}) and EGM96 geoid (N_{96}) and the gravimetric geoid (**N**_{gr}) for the Central part of Sudan......103 Table (6.22): Statistical analysis of absolute accuracy of the derived model three geoid after portioning......104

LIST OF FIGURES

Figure (2.1): The orthometric height (H_{ortho}) of point *P*(adapted from Featherstone and Kuhn, 2006) **Figure (3.1)** Interpolation point k of which geoid undulation value is going to be computed and neighbor reference points that contributes the computation of geoid undulation at point k.... **Figure (4.1):** The normal height (H^{N}), height anomaly (ζ), ellipsoid (*h*), orthometric (*H*), and geoid heights (*N*) **Figure** (4.2): The spherical cap σc with radius₀ **Figure (5.1):** Distribution of the Sudan gravity anomaly data (BGI) in mGal.... Figure (5.2): The GPS satellites and the two GRACE satellites..... Figure (5.3): Distribution of 128 GPS/Levelling Stations in the area of study..... Figure (6.1): Contour map for Sudan observed bouguer gravity anomaly .Contour interval 10 mGal......67 Figure (6.2): Gravity anomaly extracted from global geopotential models EGM96, OSU91a and Japan Global Gravity Project GGP......68 Figure (6.3):Comparison Between Observed gravity anomalies (dg_Obs) ,and GGM gravity anomalies in Hegleege area......71 Figure (6.4): Grid lines with equi-angular blocks 5' x 5'.....74 Figure (6.5): DTM for Sudan extracted from GGM's OSU91a, BGI and EGM96.....7 5 **Figure (6.6):** Downward continued correction (**N**_{dwc}) Figure (6.8): Combined atmospheric correction(N_{ATM}) Figure (6.9): Ellipsoidal correction (N_e)..... Figure (6.10): The additive correction (N_{AC}) Figure(6.11): The new gravimetric geoid (SUDG2011)79 Figure (6.12): Sudan geoid extracted from the global geoid models and new gravimetric geoid

Figure (6.13): The gradian of the new gravimetric geoid in the direction from the South-East corner to the North-West. Figure (6.14): The gradian of the new gravimetric geoid in the direction from the South-West corner to the North-East. **Figure (6.15):** Distribution of 18 GPS/Levelling stations83 Figure (6.16): Visual comparison between the differences before fitting and after fitting using the three models: Figure (6.17): Differences between GPS/Levelling and EGM96 (**N96**), and the new gravimetric geoid (N_{grAF}). Figure (6.18): Comparison between the GPS/Levelling and (EGM96) in (a) and the additive correction in (b) Figure (6.19): Combination of the two models in Figure Figure (6.20): Distribution of 15 GPS/Levelling stations Figure (6.21): GPS/Levelling minus EGM96 (Ngps-Ng96) and GPS/Levelling minus EGM2008 (Ngps-Ng08) interpolated using Figure (6.22): GPS/Levelling minus EGM96 (N_{gps}-N₉₆) and GPS/Levelling minus geometric geoid (**N**_{gps}-**N**_{geom}) Figure (6.23): GPS/Levelling minus EGM96 (N_{gps}-N₉₆) compared to the GPS/Levelling minus gravimetric geoid Figure (6.24):GPS/Levelling minus EGM96 (N_{gps}-N₉₆) and GPS/Levelling minus Hybrid geoid (N_{gps}-N_{Hybrid})......99 Figure (6.25): Differnces between GPS/Levelling and three derived models..... 99 **Figure (6.26):** Distribution of GPS/Levelling in three zones.....101

Figure (6.27):	Distribution	of 12	test	points	in	the	Central	part o	of	study
area	•••••									102
Figure (6.28):	Distribution	of 12	test	points	in	the	Central	part o	of	study
area					• • • •					.102

LIST OF ABBREVIATIONS

КТН	Kungliga Tekniska högskolan
СНАМР	Challenging Mini-satellite Payload
CI	Confidence interval
DC	Downward continuation
DEM	Digital elevation model
DOT	Dynamic ocean topography
DTE	Direct topographical effect
EDS	Earth deformation study
EGM96	Earth Gravity Model 1996
ESA	European Space Agency
FFT	Fast Fourier transformation

GBVP	Geodetic boundary-value problem							
GEODAS	Geophysical data system							
GGM	Global g	jeopo	ten	tial m	odel			
GNSS	Global N	aviga	tior	Sate	llite S	yste	em	
GOCE	Gravit	y fie	eld	and	stea	dy	state	Ocean
Circulation Exp	lorer							
GPS	Global P	ositio	ning	g Syste	em			
GPU	Geopote	ntial	unit	S				
GRACE	Gravity I	Recov	ery	and C	Climat	e Ex	kperim	ent
GRAS	Geological Research Authority of Sudan							
GRS80	Geodetic Reference System 1980							
HG	Heck	and	G	rüning	ger	(19	983)	kernel
modification								
IAG	Internati	onal	Asso	ociatio	on of (Geo	desy	
IGSN71	Internati	onal	Grav	vity St	anda	rdiz	ation N	letwork
1971								
ITRF96	Internati	onal	Te	rrestri	al F	Refe	rence	Frame
1996								
LSC	Least-sq	uares	col	locati	on			
LVD	Local ve	rtical	dat	um				
ML	Meissl (1	.971)	ker	nel m	odific	atio	n	
MSL	Mean Se	a Lev	el					
MSST	Mean dy	nami	c Se	ea Sur	face ⁻	Горо	graphy	΄,
NAVD88	North Ar	nerica	an V	'ertica	l Dat	um 1	1988	
NOAA	National	C	Cea	anic	and	d	Atmo	spheric
Administration								

NOC	Normal-orthometric correction
PITE	Primary indirect topographical effect
RB	Refined Bouguer gravity anomaly
RCR	Remove-compute-restore
RMS	Root mean square
RTK	Real-time kinematic
SB	Simple Bouguer gravity anomaly
IS	International System
SITE	Secondary indirect topographical effect
STD	Standard deviation
ТС	Terrain correction
UNB	University of New Brunswick
WG	Wong and Gore (1969) kernel modification
WGS72	World Geodetic System 1972
WGS84	World Geodetic System 1984

LIST OF SYMBOLS

a	Semi-major axis of the reference ellipsoid
dn	Height difference
dψ, dα	Surface spherical coordinates
dσ	Surface area element on the sphere
dγ/dh	Vertical free-air gradient
	Squared eccentricity of reference ellipsoid
f	Flattening of the reference ellipsoid

L +	Gravity flattening constant
g	Gravity vector along the plumb line
	Constant gravity
	Gravity observation in the mean Earth-tide model
	Average surface gravity
	Surface gravity observation
	Helmert approximation of integral mean gravity
	along Plump line
$oldsymbol{g}$ Neithammer	Neithammer approximation of integral mean gravity
along	
	Plumb line
${old g}$ Mader	Mader approximation of integral mean gravity along
	plumb line
h	Ellipsoidal height
(r, φ , λ)	Geocentric polar coordinates
k	Normal gravity constant
K	
K 1	Planar distance between two points
l m	Planar distance between two points Order of spherical harmonics
l m n	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics
l m n r	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth
I m n r C	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number
I m n r C G	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number Universal gravitational constant
I m n r C G GM	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number Universal gravitational constant Product of Newtonian gravitational constant and
I m n r C G GM	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number Universal gravitational constant Product of Newtonian gravitational constant and mass of Earth
I m n r C G GM	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number Universal gravitational constant Product of Newtonian gravitational constant and mass of Earth Dynamic height
I m n r C G GM	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number Universal gravitational constant Product of Newtonian gravitational constant and mass of Earth Dynamic height Orthometric height
I m n r C G GM	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number Universal gravitational constant Product of Newtonian gravitational constant and mass of Earth Dynamic height Orthometric height Normal height
I m n r C G GM	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number Universal gravitational constant Product of Newtonian gravitational constant and mass of Earth Dynamic height Orthometric height Normal height
K I m n r C G G M	Planar distance between two points Order of spherical harmonics Degree of spherical harmonics Geocentric radius of the Earth Geopotential number Universal gravitational constant Product of Newtonian gravitational constant and mass of Earth Dynamic height Orthometric height Normal height Normal height Stokes error kernel function

М	Degree of GGM expansion
	Maximum complete degree of harmonic expansion
Ν	Geoid height
	Geoid undulation from GGM
Ρ	Degree of spheroidal kernel modification
	Position of <i>P</i> projected onto the geoid
	Legendre polynomial
	Associated Legendre function
	Truncation error coefficients
R	Mean radius of the Earth
5	Spherical Stokes's kernel function
U	Normal potential
	Normal potential on telluroid at point Q
	Global geopotential
	Geopotential at point P
α	Azimuth
δ	Atmospheric correction
	Planar Bouguer correction
	Free-air correction
	Terrain effect at topographic surface
	Terrain effect at geoid
,	Fully normalised spherical harmonic coefficients
δ_{ϕ}	Difference in latitude
η	East-west vertical deflection
γ	Normal gravity of reference ellipsoid
	Normal gravity at 45ºN/S
	Normal gravity along the ellipsoidal normal
	Normal gravity at equator
λ	Geodetic longitude
λ'	Longitude of variable surface element

φ [']	Latitude of variable surface element $d\sigma$
φ	Geodetic latitude
	Average latitude
Ψ	Angular distance between two points
	Angular integration cap radius
ρ	Topographic mass density
σ	Sphere of integration
Oaverage	Weighted average standard deviation
ξ	North-south vertical deflection
ζ	Quasigeoid height/height anomaly
ΔC	Geopotential difference
Δg	Gravity anomalies reduced to the quasigeoid
	Simple Bouguer anomaly
	Free air gravity anomaly