In the Name Of Allah More Mercy Gracious More merciful Sudan University for Science & Technology College of Graduate Studies

Transmission Line Design (Sag & Tension Calculation) in eastern Grid Project

تصميم خط نقل الطاقة الكهربية (حساب الشد والارتخاء) مشروع الشبكة الشرقية

A thesis Submitted in Partial Fulfillment for the requirement for the degree of M.Sc. of Science of Electrical Engineering (Power)

Prepared By:

Bahaeldeen Ali Abdelrahman Alamin

Supervisor:

Us. Khamees Arbeesh Saad Eldeen

قال تعالى:

000000 0000 000

سورة طه الآيات (24-28)

Acknowledgement

I dedicate this study to

My :

Parents:,

Sisters, brothers,

Teachers,

Who gave me A very good History,,,

To Who gave me faith that the future will be better ,,,

My Wife (Sara)

Who Gave The Live it's Meanings

My Child (Ahmed)

Acknowledgement

Firstly All my thanks due to Allah about his uncountable gifts, Then I would like to express my sincere gratitude to my supervisor, US. Khamees Arbeesh, for his kind support, supervision guidance, valuable recommendations and continuous encouragement through my hardest times.

I am also very grateful to Eng. Abdelsalam for his help in providing facilities.

Special thanks and appreciation are due to the Eng. Alrufai and all College staff in SETCO Company.

Abstract

Electric power transmission line design is highly affected by the climatically conditions. Sudan climate is partially tropical & Subtropical considering that maximum & minimum temperature differences are between 5°C to 50°C night and day time respectively, form which high temperature is the main reason in transmission lines capacities.

The objective of this thesis is to (1) calculate the maximum sag and tension of transmission line between Gadarif and Shwak Substations under maximum temperature conditions. (2) To calculate the final and initial (sag & tension) in different condition of the winds.

The thesis also explains the climatic conditions and their effects on the line components design such as conductors and insulators.

It is also intended to choose the suitable design which enhances the line stability during transient and sub-transient conditions and the creep age distance after detecting the level of pollution.

Newton Raphson Method is used with the help of MATLAB software and parabolic equation is applied to solve the sag and tensions in different conditions using conductor technical particular specifications.

تجــريد

تصميم خطوط نقل الطاقة الكهربائية يتأثر تأثيراً كبيراً بالظروف المناخية. يوصف مناخ السودان بأنه مناخ استوائي او شبه استوائي باعتبار ان درجات الحرارة تتأرجح بين 5 درجات اثناء الليل الى 50 درجة أثناء ساعات النهار وتعتبر الدرجة القصوى للحرارة هي العامل الأساسي الذي يؤثر في تصميم سعة الخط النا قل.

الهدف الأساسي من هذه الدراسة حساب أقصى شد وارتخاء في الخط الرابط بين محطتي القضارف والشوك عند أقصى وأدنى درجة حرارة. وكذلك حساب (الشد والارتخاء عند احوال مختلفة ناتحة من تاثير الرياح).

هذه الدراسة توضح أيضاً تأثير الأحوال المناخية في اختيار مكونات خطوط نقل الطاقة الكهربائية (الموصلات والعوازل).

كذلك تساعد في اختيار التصميم اللازم لتحسين است قرارية الخط اثناء الحالات العابرة والحالات العابرة والحالات العابرة بسرعة. أيضاً حساب مسافة الانحناءات في العوازل بعد تحديد مستوى التلوث البيئي.

تم استخدام طرد قة نيوتن رافسون التكراردة في معادلة بارابولك بلغة ماتلاب لحساب الشد والارتخاء في أحوال مناخية مختلفة بعد اختيار المواصفات التقنية لموصلات خط النقل.

List Of Abbreviations

PLS	Power Line System
UV	Ultra Violet Radiation
ACSR	Aluminum Conductor Steel Reinforced
UTS	Ultimate Tensile Style
FOC	Factory of Safety
TM	Maximum Temperature (Design Operating Temperature)
TA	Ambient Temperature
MWT	Maximum Work Tension
OTM	Over turning Moment
BIL	Basic Insulation Level
ESDD	Equivalent Salt Deposit Density
NEC	National Electricity Corporation
SLiM	Sag Line Mitigator
OPGW	Optical Ground Wire
GSW	Ground Steel Wire

STANDARD		
ANSI	=	American National Standards Institute
AS	=	Australian Standard
ASTM	=	The American Society for Testing and Materials
BS	=	British Standard
IEC	=	International Electrotechnical Commission
ISO	=	International Standard Organisation
JIS	=	Japanese Industrial Standard
NEMA	=	National Electrical Manufacturers Association

List of contents

No	Title	Page No
	الاية	I
	Dedication	II
	Acknowledgement	III
	Abstract (English)	IV
	Abstract (Arabic)	V
	List of Abbreviations	VI
	List of Contents	VII
	List of tables	X
	List of figures	XI
	Chapter One	
	Introduction	
1.1	Preface	1
1.2	Objective of the Project	1
1.3	Sag and Tension Calculations	3
1.3.1	Sagging method	3
1.4	Methodology	4
1.5	The layout of the Research	4
	Chapter Two	
	overhead line routing	
2.1	Preface	5
2.2	Routing Objectives	5

2.3	Optimization	6
2.3.1	Practical Routing Considerations	6
2.4	Soil Investigations	7
2.4.1	Purpose of investigation and technical requirement	8
2.5	Foundations and Earthling	8
	Chapter Three	
	Transmission Line Components	
3.1	Preface	11
3.2	Insulator Strings	11
3.2.1	Post-Type Insulators	11
3.2.2	Long Rod Insulators	12
3.2.3	Nonceramic (Composite) Insulators	12
3.2.4	Contamination Considered in the Design	12
3.2.5	Types and Numbers of disk insulators	13
3.3	Types of Conductor	13
3.4	Overhead line Towers	14
3.4.1	Cross-arms	15
3.4.2	There are several types of towers	15
3.5	Line Hardware	18
3.6	Overhead Line Spans	20
3.6.1	Wind Span	20
3.6.2	Weight Span	20
3.6.3	Equivalent Span	21
3.7	Creep	23

Chapter Four			
The Sagging Line Mitigator (SLiM)			
4.1	Overview	24	
4.2	Design	24	
4.3	Specifications of SLiM	27	
	Chapter Five		
	Sag and Tension Calculation		
5.1	Sag and Tension Calculations	29	
5.2	Results	33	
5.2.1	First Condition	33	
5.2.2	Second Condition	33	
5.3	Discussion	42	
	Chapter Six		
	Conclusion and Recommendations		
6.1	Conclusion	44	
6.2	Recommendations	46	
	References	47	
	Appendixes		

List of tables

Table No	Title	Page No
3.1	Some common load-bearing hardware.	19
4.1	Specification for the SLiM	27
5.1	First condition, Case (1) Minimum temperature and	34
	various span	
5.2	First Condition, Case (2) Maximum Temperature 800C	35
	and various span (210-450)	
5.3	First condition case (3) fixed span at maximum span and	36
	various temperature (20-800C)	
5.4	Second condition, case (1) Minimums temperature 200C	37
	and various span (210-450)	
5.5	Second Condition, Case two Maximum Temperature	39
	800C and various span (210-450)	
5.6	Second Condition, case (3) Fixed span at maximum span	40
	450 and various temperature (20-800C)	

List of Figures

Fig No	Title	Page No
2.1	A generated 3D terrain showing a portion of line PLS Cadd, Power	6
	Line Systems, Inc 1993-2008)	
2.2	A tower connection to the steel reinforcement within the concrete	10
	foundation.	
3.1	Insulator string: a) clevis type, b) ball and- socket type.	12
3.2	A typical example of a suspension structure	15
3.3	Tension Tower	17
3.4	Installation Of River Tower	18
3.5	Wind and weight Span	20
3.6	Equivalent Span	21
4.1	Sagging Line Mitigator SLiM)	23
4.2	Components of the SLiM Shirmohamadi 2006b)	25
4.3	The SLiM's nickel-titanium actuator	26
4.4	data acquision	27
4.5	Mounting of the stepper motor to measure the SLiM's linear	28
	displacement.	
5.1	Wind effect of 2/3 diameter of conductor temperature versus of sag	37
5.2	Wind effect of 2/3 diameter of conductor tension versus of tension	37
5.3	Wind effect 2/3 diameter of conductor sag tension versus of	37
	temperature	
5.4	Second condition, case (1) Minimums temperature 200C and	41

	various span (210-450)	
5.5	Second Condition, Case two Maximum Temperature 800C and various span (210-450)	41
5.6	Second Condition, case (3) Fixed span at maximum span 450 and various temperature (20-800C)	41