ACKNOWLEDGEMENTS

First and foremost, I would like to thank God.
Secondly, I would like to express my utmost gratitude to my thesis supervisor, Dr. Fatah al Rahman, who gives me support, guidance, continuous encouragement throughout my project thesis. Without help from him, I would not be unable to complete this report.

Finally, I would like to give a special thanks to my parents and my friends for their care, love and support during my study.

المستخلص

في هذه الدراسة تم عمل المعادلات الاساسية باسـتخدام طريقـة العنصـر المحدد للجملونات الفراغية وقد استخدمت هذه المعـادلات لعمـل برنامـج
 باستخدام برنامج الماتلاب. تم تحليل بعض الجملونات البسيطة باستخدام هذا البرنامج للتاكد من فعالية البرنامج, وايضا تم تحليل نفـس الجمات بواسطة برنامج الساب 2000 وقد وجدت النتائج متطابقة.

ABSTRACT

In this study the Finite Element formulation for space trusses was modeled in MATLAB Program Language. The modeled Program named Analysis of Space Truss by using MATLAB Program language (ASTMP). Numerical examples were used in order to check the (ASTMP) program. The results obtained by ASTMP were also verified by using structural analysis software program SAP2000 and were found to be acceptable.
TABLE OF CONTENTS
TITLE PAGE
ACKNOWLEDGEMENTS ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES viii
LIST OF SYMBOLS x
CHAPTER ONE: GENERAL INTRODUCTION 1
1.1Introduction to Finite Element 1 Method
1.2 Introduction to Space Truss 4
1.3 Objective of Research 5
1.4 Methodology of Research 5
1.5 Outlines of Research 5
CHAPTER TWO: LITERATURE REVIEW 7
2.1. Historical Background of Finite 7
Element
2.1.1The Basic Principles Of The Finite 13
Element Method
2.2 Trusses 17
2.2.1 Space Truss 21
CHAPTER THREE: FINITE ELEMENT 27 FORMULATION FOR SPACETRUSS
3.1 Formulation for Space Truss 27
CHAPTER FOUR: IMPLEMENTATION OF 38
FORMULATION IN MATLAB
PROGRAMMING LAGUAGE
4.1 Introduction about MATLAB 38
program
4.2 Applications of M ATLAB Program 38
4.3 Advantages using MATLAB 40 program
4.4 space truss program (3D)(ASTMP) 44
4.5 Steps of Running (ASTMP) program 44
CHAPTER FIVE: ANALYSIS OF SPACE 48 TRUSSES AND RESULT
5.1 Introduction 48
5.2 Three Members Space Truss 48
5.3 Four Members Space Truss 54
5.4 Twenty Five-Bar Space Truss 59
5.5 Prismatic Shaped Space Truss 66
CHAPTER SIX: CONCLUSION AND 73 RECOMMENDATION
6.1 Conclusions 73
6.2 Recommendations 73
REFERENCES 74

APPENDIX A

APPENDIX B 82
PAGE
LIST OF TABLES
TITLE
TABLE
NO.

Table 2.1
12 Time Line of Important Developments.
50 Displacement at node 4 in X-direction Table 5.1 for three members Truss.
50 Displacement at node 4 in Y-direction Table 5.2 for three members Truss.
50 Internal force in members due to Table 5.3 applied pint load 5000lbfor three members Truss.
51 Internal forces due to applied Table 5.4 different point loads in member 3for three members Truss.
55 Displacement at node 1 in X-direction Table 5.5 for Four Members Truss.
55 Displacement at node 1 in Y-direction Table 5.6 for Four Members Truss.
55 Displacement at node 1 in Z-directionTable 5.7for Four Members Truss.
56 Internal forces in members due to Table 5.8applied point load 10000N for FourMember Truss.
56 Internal forces due to applied Table 5.9different point loads in member 3 forFour Member Truss.
60 Nodal loads for the 25-bar truss. Table 5.10
60 Nodal Coordinates.Table 5.11
61 Displacement at node 2 in X-direction Table 5.12for Twenty Five-Bar Space Truss.61 Displacement at node 2 in Y-directionTable 5.13for Twenty Five-Bar Space Truss.
61 Displacement at node 2 in Z-direction Table 5.14for Twenty Five-Bar Space Truss.
62 Internal Force in Members due toapplied point loads for Twenty Five-Bar Space Truss.
63 Internal forces due to applied different point loads in member 25 for Twenty Five-Bar Space Truss.
68 Displacement at node 8 in X - Table 5.17direction for Prismatic Shaped SpaceTruss.
68 Displacement at node 8 in Y-direction Table 5.18 for Prismatic Shaped Space Truss.
69 internal force in members due to Table 5.19applied point load 5000N forPrismatic Shaped Space Truss.
70 Internal force due to applied different Table 5.20point loads in member 4 forPrismatic Shaped Space Truss.

LIST OF FIGURES

PAGE

 TITLEFigure
NO.
3 (a) Finite difference and (b) finite element discretizations of a turbine blade profile.

11 Example of (a) a truss and (b) a similarly shaped plate supporting the same load.

20 Space trusses. (a) Side view and top view of a truncated Truss dome. (b) A space truss constructed from plane trusses.

26 Examples of single layer dome.
27 The element geometry of space (3D) bar element

Fig.1.1

Fig.2.1

Fig.2.2

Fig.2.3
Fig.3.1
28
Displacements and forces of the3D bar element
31 global and local coordinate system. Fig.3.3Fig.3.2
42 Flow chart of Analysis Space Trussusing MATLAB program (ASTMP).
45 Input data for three members Truss.Fig.4.1Fig.4.2
46 Boundary conditions and loads datafor three members Truss.
47 Results of displacements and internal forces for three members Truss.
49 Three members Truss.Fig.4.3
Fig.4.4Fig.5.1
52 Displacement at node 4 in X-directionfor three members Truss.
52 Displacement at node 4 in Y-direction for three members Truss.
53 Internal force due to applied different point loads in member 3 for three members Truss.54 Four Member Truss.Fig.5.5
57 Displacement at node 1 in X-direction for Four Member Truss .
57 Displacement at node 1 in Y-direction for Four Member Truss.
58 Displacement at node 1 in Z-directionfor Four Member Truss.
58 Internal forces due to applied differentFig.5.4Fig.5.2Fig.5.3Fig.5.6point loads in member 3 for FourMember Truss.

59 Twenty Five-Bar Space Truss
Fig.5.10
Fig.5.11 direction Twenty for Five-Bar Space Truss.
64 Displacements at node 2 in Y-direction for Twenty Five-Bar Space Truss.

65 Displacements at node 2 in Z-direction for Twenty Five-Bar Space Truss.

65 Internal force for different point loads in member 25 for Twenty Five-Bar Space Truss.

67 Prismatic Shaped Space Truss (Geometry and Data).

71 Displacement at node 8 in X -direction for Prismatic Shaped Space Truss.

71 Displacement at node 8 in Y-direction for Prismatic Shaped Space Truss.

72 Internal force due to applied different point loads in member 4 for Prismatic Shaped Space Truss.

LIST OF SYMBOLS

E - Young's Modulus.
A - Cross-sectional area of an element.
L - Length of an element.
$\left[k^{e}\right]$ - Element stiffness matrix in the local coordinate system.
$\{u\}-\quad$ Element displacements in local coordinate system.
\{f\} - Element nodal force components in local coordinate system.
[K] - Element stiffness matrix in the global coordinate system.
$\{U\} \quad-\quad$ Element displacement vector in global coordinate system.
$\{F\}$ - Element nodal force vector components in global coordinate system.
$\mathrm{Ni} \quad-\quad$ Shape function for node i.
ui $\quad-\quad$ Nodal displacement at nodes at local coordinate system.
$\mathrm{Ui} \quad$ - Displacement at joints in global coordinate system.

ठu - virtual displacement.
P - Axial load.
$\varepsilon_{\mathrm{x}} \quad-\quad$ Strain component.
[T] - Transformation matrix.
[K] - Element stiffness matrix in the global coordinate system.

