بسم الله الرحمن الرحيم

Sudan University of Science& Technology College of Graduate Studies

DEVELOPING OF QUALITY CONTROL SYSTEM FOR CEMENT MANUFACTURING USING SOFTWARE TECHNIQUES

(Case Study: ALSALAM Cement Factory)

(DDDDDD DDDDDD DDDD DDDD DDDD)

A thesis Submitted as Partial Fulfillment for the Requirements of a Master Degree in Mechanical Engineering (Production)

By:

Murtada Mohammed Osman Elshiekh Mohammed

Supervisor:

Dr. Ahmed Hassan Ahmed

FEB-2011

Acknowledgement

I wish to offer my thanks to supervisor Dr. AHMED HASSAN AHMED for his expert supervision and encouragement through out the course of this study.

I would like to express my deep gratitude to my family and all friends for their continuous encouragement.

I'm also grateful to those whom have helped to produce this research in it is final form.

ABSTRACT

The cement material is considered to be one of a great importance in different aspects of building development projects and as a commodity for export and investment. Accordingly, the product should be identical to the standard specification within manufacturing stages to ensure quality. Also, it is necessary to compete with other products of other factories spreading all over the world.

This research is focusing on creating a system that monitors and records daily readings of the cement physical tests at quality laboratories of cement factory and accordingly the control charts for each test were established.

The importance of control charts for the variables lies in the expression of the system status (inside or outside the control limits); normally the points which are located outside the borders indicate that the system is out of control. But in some cases, the points are within the control limits but took an abnormal distribution. These abnormal distribution cases can be classified into eight models include an increasing pattern, decreasing pattern, systematic pattern, stratification pattern, mixture pattern, freak pattern, gradual change pattern and the sudden shift pattern.

First, the system determines the style of pattern type, analyze and then find out the expected causes and suggest the solutions. The system was tested by inserting different records in different intervals of time; the results obtained were reasonable and had explained the effectiveness of the system.

تعدَ بر مادّة الإسمنت ذات أهمية كبرى في المجالات المختلفة من مشروعات التنمية العمرانية وكسلعة جاذبة للتصدير والإستثمار. وعليه يجب على المنتج ان يكون مطابقاً للمواصفات القياسية خلال مراحل الانتاج للتأكد من سلامة الجودة . أيضاً، تعتبر ضرورية للتنافس مع المُندَ جات الأخرى للعديد من المصانع المنتشرة في جميع أنحاء العالم.

هذه الأطروحة تهتم بإنشاء نظام يعمل على رصد وتسجيل القراءات اليومية للتجارب الفيزيائية للأسمنت بمعامل الجودة، وعلى ضوء هذه القراءات يتم انشاء خرائط الرقابة لكل اختبار.

تكمن أهمية خرائط الرقابة للمتغيرات في التعبير عن حالة الذظام (من حيث الحدود العليا والدنيا للرقابة)، في العادة الذقاط التي تقع خارج الحدود تشير الى أن النظام خارج الرقابة. لكن هنا لك بعض الحالات تكون الذقاط داخل حدود الرقابة ولكنها تأحذ توزيعاً غير طبيعياً. تم تصنيف هذه الحالات الى ثمانية نماذج تشمل نمط متزايد، نمط متنا قص، نمط نظامي، نمط تطبقي ، نمط خليط، نمط ذو نزوات، نمط ذوتغير تدريجي ونمط ذو تغير مفاجئ.

في البدء يعمل النظام على تحديد نوع الذمطومن ثم تحليله وتو قع اسباب حدوثه وا قتراح الحلول. تم اختبار النظام بادخال سجلات مختلفة لفترات زمنية مختلفة، و قد كانت النتائج التي تم الحصول عليها منطقية الى حدٍ كبير وأوضحت مدى فاعلية النظام.

Table of Contents

	Page
Acknowledgement	II
Abstract	III
Arabic Abstract	IV
Table of Contents	V
List of Figures	VI
List of Tables	VIII
Chapter One "Introduction"	5
1.1 Introduction	6
1.2 Problem Statement	7
1.3 Research Objectives	8
1.4 Research Methodology	8
Chapter Two "Quality Control"	9
2.1 Introduction to Quality	10
2.2 Control Limits	15
2.3 Subgroups	16
2.3.1 Subgroups in Variable Control Charts	16
2.3.2 Subgroups in Attribute Control Charts	16
2.4 Types of Charts Available for Variable Data Charts	16
2.4.1 Individual Charts (I chart)	17
2.4.2 Average Charts (X-bar Chart)	18
2.4.2.1 Variable Data Subgroups	19
2.4.3 Range Chart (R-Chart)	20
2.5 Quality Control Chart Patterns	20

2.5.1 Control Charts Pattern Recognition Methodology	22
Chapter Three "Manufacturing of Cement"	26
3.1 Manufacturing of Cement	27
3.2 Main Processes Sub- Processes and System Boundaries	28
3.2.1 Quarrying	28
3.2.2 Raw Materials Preparation	29
3.2.3 Fuels Preparation	29
3.2.4 Clinker Burning	30
3.2.5 Cement Grinding	30
3.2.6 Mineral Additions Preparation	30
3.2.7 Cement Dispatch	30
3.3 The Four Main "Whole Plant Concepts"	31
3.4 Types of Cement	33
3.4.1 Chemical Properties of Cement	33
3.4.1.1 Basic Composition	34
3.4.2 Types of Portland Cement	35
3.4.3 Physical Properties	36
3.4.3.1 Fineness	37
3.4.3.2 Soundness	40
3.4.3.3 Setting Time	42
3.4.3.4 Strength	45
3.4.3.4.1 Compressive Strength	45
3.5 Applications	46
Chapter Four "Software Design"	47
4.1 Software Design	48
4.2 Software Requirement	48
4.2.1 Inputs	48

4.2.2 Processing	48
4.2.3 Outputs	48
4.3 Software Language	49
4.4 Creating Database	50
4.5 User Interface	52
4.6 Examples	59
4.6.1 Example (1)	59
4.6.2 Example (2)	60
4.6.3 Example (3)	61
4.6.4 Example (4)	62
4.6.5 Example (5)	62
4.6.6 Example (6)	63
4.6.7 Example (7)	64
Chapter Five "Results Discussion and Conclusion"	65
5.1 Results	66
5.2 Discussion	67
5.3 Conclusions	69
5.4 Recommendations	69
References	71
Appendices	72
Appendix (A) Statistical Quality Control Standards	73
Appendix (B) Examples	75
Appendix (C) the Programming Code	79

List of Figures

	Page
Fig. 2.1 Control chart	13
Fig.2.2 Normal Distribution	15
Fig. 2.3 Variable data	17
Fig. 2.4 Individual chart	17
Fig. 2.5 X-bar Chart	19
Fig. 2.6 R-Chart	20
Fig. 2.7 Natural Pattern	23
Fig. 2.8 Trend Pattern	23
Fig. 2.9 Systematic Variable Pattern	24
Fig. 2.10 Mixture Pattern	24
Fig. 2.11 Stratification Pattern	24
Fig. 2.12 Freaks Pattern	24
Fig. 2.13 Sudden-shift in level Pattern	25
Fig. 2.14 Gradual-change in level Pattern	25
Fig. 2.15 Cyclic Pattern	25
Fig. 3.1 processes/Sub-processes identification of cement production	28
Fig. 3.2: production of cement by the dry process	32
Fig. 3.3 Typical Oxide Composition of Portland Cement	35
Fig. 3.4 Microprocessor-controlled Air Permeability Tester	38
Fig.3. 5 Soundness Tester	41
Fig.3. 6 Le- chatelier mould	42
Fig. 3.7 Vicat	44
Fig. 3.8: Compressive strength tester	46

Fig. 4.1 creating a database	50
Fig. 4.2 Design view for test results	51
Fig. 4.3 Datasheet view for test results	52
Fig. 4.4 Main Form	53
Fig. 4.5 Processing Screen	54
Fig. 4.6 Checking Massages for Delete	55
Fig. 4.7 Causes of out of control	55
Fig. 4.8 Patterns Types	56
Fig. 4.9 Data in Periods	57
Fig. 4.10 Construct Chart	58
Fig. 4.11 Chart Presentation	59
Fig. 4.12 X-Chart for Compressive 2 Days (Freaks Pattern)	60
Fig. 4.13 X-Chart for Compressive 28 Days (Gradual Change Pattern)	61
Fig. 4.14 X-Chart for Expansion (Unknown Pattern)	61
Fig. 4.15 R-Chart for Blaine (Freaks Pattern)	62
Fig 4.16 X-Chart for Expansion (Decreasing Trent Pattern)	63
Fig. 4.17 X-Chart for Blaine (Systematic Pattern)	63
Fig. 4.18 X-Chart for Expansion (Gradual Change Pattern)	64

List of Tables

	Page
Table 2.1 Comparison between Poor and High Quality	11
Table 3.1 Main Constituents in Typical Portland cement	34
Table 3.2 ASTM Types of Portland cement	36
Table 3.3: ASTM C 150 Specified Set Times by Test Method	44
Table 3.4 ASTM C 150 Portland Cement Compressive Strength	46