OBI - <offline>

Cycle Execution

<table>
<thead>
<tr>
<th>TEXT</th>
<th>Data Type</th>
<th>Address</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBIEVENTCLASS</td>
<td>Byte</td>
<td>0.8</td>
<td>Bits 0-3 = 1 (Incoming event), Bits 4-7 = 1 (Event class 1)</td>
</tr>
<tr>
<td>OBI_SCAN</td>
<td>Byte</td>
<td>1.0</td>
<td>1 (Cold restart scan 1 of OB 1), 3 (Scan 2-n of OB 1)</td>
</tr>
<tr>
<td>OBI_PRIORITY</td>
<td>Byte</td>
<td>2.0</td>
<td>Priority of OB Execution</td>
</tr>
<tr>
<td>OBI_OB_NUMBER</td>
<td>Byte</td>
<td>3.0</td>
<td>2 (Organization block 2, OBI)</td>
</tr>
<tr>
<td>OBI_RESERVED_1</td>
<td>Byte</td>
<td>4.0</td>
<td>Reserved for system</td>
</tr>
<tr>
<td>OBI_RESERVED_2</td>
<td>Byte</td>
<td>5.0</td>
<td>Reserved for system</td>
</tr>
<tr>
<td>OBI_RUN_CYCLE</td>
<td>Int</td>
<td>6.6</td>
<td>Cycle time of previous OBI scan (milliseconds)</td>
</tr>
<tr>
<td>OBI_MIN_CYCLE</td>
<td>Int</td>
<td>8.6</td>
<td>Minimum cycle time of OBI (milliseconds)</td>
</tr>
<tr>
<td>OBI_MAX_CYCLE</td>
<td>Int</td>
<td>16.0</td>
<td>Maximum cycle time of OBI (milliseconds)</td>
</tr>
<tr>
<td>OBI_DATE_TIME</td>
<td>Date And Time</td>
<td>12.6</td>
<td>Date and time OBI started</td>
</tr>
</tbody>
</table>

Block: OBI "Main Program Start (Cycles)"

Network 1: channel_A, condenser, Vacuum

1 12.0 close when vacuum < -513 mbar
1 12.1 Isolate vacuum pump

Network 2: channel_A, condenser, Level

1 12.2 close when condenser water level < normal + 548 mm

Network 3: channel_A, Electrical, Tripping, Contact

1 112.3
1 112.4
Network 4 channel_A_lube_oil_pressure
I 12.5 close when lube oil pressure < 0.28 Bar

Network 5 Trip A_V channel_A
I 12.6 Power oil > 1 Bar
I 12.7 on_load_test
Q24.0 output relay to Trip A_V channel_A

Network 6 channel_B_condenser_Vacuum
I 16.0 close when vacuum < -513 mBar
I 16.1 isolate vacuum P&M

Network 7 channel_B_condenser_Level
I 16.2 close when condenser water level > normal +540 mm
Network 17

```
DIV R | MUL R
EN | ENO
IN1 | OUT
MD31 | MD31
2.764800e+004 | 0.000000e+000
IN2 | IN2
```

Network 18

```
ADD R | CMP PR
EN | ENO
MD31 | MD39
IN1 | OUT
0.000000e+000 | 7.000000e+001
IN2 | IN2
```

Network 19 Generator winding R

```
LD R | BT R
EN | ENO
IN276 | OUT
MD41 | MD41
```

Network 20

```
SUB R
EN | ENO
1.500000e+002 | 0.000000e+000
0.000000e+000 | 0.000000e+000
```

Network 21

```
DIV R | MUL R
EN | ENO
MD45 | MD45
IN1 | OUT
MD45 | MD45
2.764800e+004 | 0.000000e+000
IN2 | IN2
```
Network: 86 channel A Alarm condenser level

Network: 87 channel A Alarm Generator Protection

Network: 88 channel A Alarm lube oil press low

Network: 89 channel A Alarm Turbine Trip

Network: 90 channel B Alarm vacuum
Network: 91 channel B Alarm condenser level

Network: 92 channel A Alarm Generator Protection

Network: 93 channel B Alarm lube oil press low

Network: 94 channel B Alarm Turbine Trip

Network: 95 Alarm Generator winding Temp high
Network: 116 Turbine Reset Circuit

<table>
<thead>
<tr>
<th>3</th>
<th>13.6 reset P/B in Central Control Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>13.7 FW 3/7 contacts open when power oil >3 Bar</td>
</tr>
<tr>
<td>Q</td>
<td>24.6 output to trip solenoid</td>
</tr>
</tbody>
</table>

Network: 117 Interlock to emergency stop valve

<table>
<thead>
<tr>
<th>1</th>
<th>17.5 Limit switch USK 2/7 proximity opens when trip plunger fully reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>28.6 output to release emergency stop valve interlock</td>
</tr>
</tbody>
</table>

A-25