Dedication

This thesis is dedicated to **my family**, for all the love and support they gave me during the many years I spent studying.

.....

This thesis is dedicated to **my father**, who taught me that the best kind of knowledge to have is that which is learned for its own sake.

•••••

This thesis is dedicated to **my mother**, who taught me that even the

Largest task can be accomplished if it is done one step at a time.

ACKNOWLEDGDMENTS

My faithful thanks and praise be to Allah for providing me strength to conduct my research.

I would like to thank my supervisor Dr. Gurashi Abdalla Gasmelssed, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of my research

I would like to thank my Co-supervisor Dr. Ibrahim Hassan Mohamed Elamin , his continuous assistance, invaluable advice and useful suggestions through this study.

I would like to thank M.Yassir Hashim Hassan on helping me in computer technology and ASPEN PLUSE SOFTWARE.

I would like to thank Sudan university of Science and technology, University of Khartoum, University of Science and Technology, Red Sea University and University of Gezira.

I would like to thank my family for supporting me and always making me feel comfortable at all the times.

Lastly, I offer my regards and blessing to all of those who supported me in any respect during the Preparation of my research.

ABSTRACT

Liquid-Liquid extraction is a separating unit operation process which is well known and well investigated, however, the equilibrium data For mutual solubility and tie lines are difficult to correlate and be applied. Many workers including Othmer and Tobias, Ishida, and Hand introduced methods that predict Liquid-Liquid tie-line data, but the mutual solubility data is still plotted on binodal curve on equilateral triangle.

The construction of the tie —line on the binodal curve to determine the number of theoretical stages, has to be made graphically using the relevant correlations. This requires experimental determination of the mutual solubility and tie-line data.Treybal even prior to Hand and other workers introduced a method of construction without using tie-lines data of binodal curves to determine the number of theoretical stages. This method is investigated and proved to be correct, rapid and does not require experimental determination of tie-line data.

Treybal method is used in the present work and proved to be accurate and easy to apply. The number of stages is determined using this method and all other design parameters of a sieve tray extraction column are obtained.

A complete design by hand calculation procedure is realized and Outlined. The number of theoretical stages is calculated using ASPEN PLUS SOFT WARE and it is found to be in agreement with the method investigated in this thesis.

This work also investigates the preparation of the data required to design a distillation column .It is known from the literature and practice that distillation is well known and well investigated ,However, different techniques have been used to determine the design parameters. These include the minimum reflux ratio, the actua reflux ratio, the number of theoretical stages, the number of actual stages, the feed stage location,

,the flooding velocity,the liquid-vapor flow factor,the maximum volumetric flow rate,the net area,the active area ,the hole area,the weir length,the entertainment,the weeping,the weir crest and actual minimum vapor velocity are lastly determined.

The design of adistillation column requires experimental determination and correlation of equilibrium data. The equilibrium data and component balance are used to calculate the number of theoretical stages and consequently the other design parameters. An adequate literature is cited covering the activity coefficient models such as NRTL, UNIOUAC and UNIFAC. Data obtained by these methods are used to design a distillation using ASPEN PLUS SOFTWARE .The design is also made through hand calculations and found to be asatisfactory agreement with ASPEN PLUS SOFTWARE result .Acomplete procedure by hand calculations for designing extraction and distillation columns .

⁴

عملية استخلاص السوائل بالمذيبات السـائلة مـن عمليـات الفصـل المعروفة وقد تم بحثها جيدا وعلـى الرغـم مـن ذلـك فـأن قابليـة الـذوبان المشتركة وخطوط الربط يصعب تطبيقها. وكثيراً مـن العلمـاء بحثـوا فـي هذا المجال ومنهم (Othmer and Tobias, Ishida, Hand) والذين قدموا طرقا للتنبؤ ببيانات خطوط الربط وقابلية الذوبان المشـتركة الـتي ترسـم علـى منحني عقد الاتزان الثنائي (binodal curve) في مثلث متساوي الاضلاع .

ترسم بيانات خطـوط الربـط علـي منحنـي عقـد الاتـزان الثنائي (binodal curve) لتحديد عدد المراحل النظرية والذي يجب ان يرسـم بيانيـا باستخدام خطوط الربط وهذا يتطلب اجراء تجارب لتحديد قابليـة الـذوبان المشــــــتركة وبيانـــــات خطـــوط الربــــط . العالم (Treybal) الذي سـبق (Hand) ابتـدع عـرض طريقـة لتحديـد عـدد المراحل النظرية بدون استخدام بيانات خطوط الربط علـي منحنـي عقـد المراحل النظرية بدون استخدام بيانات خطوط الربط علـي منحنـي عقـد وحيحة وسريعة ودقيقة وسهلة التطبيق ولا تتطلب القيام بتجارب لتحديـد بيانات خطوط الربط كما تم تحديد عدد المراحل وجميع بيانـات التصـميم الاخري لتصميم صينية المناخل في برج الاستخلاص ولقد تم التوصـل الـي اجراء تصميم كامل بالحساب يدوياً وا لياً.

كما تـم حسـاب عـدد المراحـل النظريـة باسـتخدام برامـج (ASPEN PLUS SOFTWARE) والذي أدي الي نتائج مطابقة مع الطريقة المثبتة في هذا البحث قد تـم فـي فـي هـذا البحـث ايضـا اعـداد البيانـات المطلوبة لتصميم برج التقطير .

وشملت اليات في تصميم برج التقطير وتشمل نسبة الراجع الــدنيا ونسبة الراجع الفعلية وعدد المراحل النظرية وعدد المراحل الفعليـة كمـا شـملت تحديـد موضـع دخـول التغذيـة وسـرعة الفيضـان ونسـبة التـدفق الحجمية وتم تحديد المساحة الصافية والمساحة النشطة ومساحة الثقوب وتضــمنت البيانــات ارتفــاع الحــاجز ومعــدل ســحب الســائل مــن البخار(الاصطياد) وقمة الحاجز وسرعة البخار الدنيا وقد استعملت بيانات الاتزان وموازنة المواد لحساب عدد المراحل النظرية ومعـاملات التصـميم الاخري.

وقد شمل أدبيـات البحـث الدراسـات السـابقة لنمـــاذج المعامـــلات النشــاطية (NRTL, UNIOUAC, UNIFAC) و استخدمت هذة المعـاملات لتصميم عمود التقطير باستخدام (ASPEN PLUS SOFTWARE).

وتم ايضا اجراء العمليات الحسابية للتصميم يدويا والتي وجدت انها تتفق تقربيا مع نتائج (ASPEN PLUS SOFTWARE) ووضعت طريقة متكاملة وواضحة لحساب بيانات التصميم يدويا وا لياً.

TABLE OF CONTENTS

Contents	Page Number
DEDICATION	Ι
ACKNOWLEDGMENT	II
ABSTRACT (English)	III
ABSTRACT (Arabic)	V
TABLE OF CONTENTS	VII
LIST OF TABLES	XI
LIST OF FIGURES	XV
LIST OF NOMENCLATURE	XVIII
CHAPTER ONE. INTRODUCTION	
1.1Introduction	1
1.2 Objectives	4
CHAPTER TWO.LITERATURE REVIEW	
2.1Extraction	5
2.1.1 Liquid-Liquid extraction	5
2.1.2 Solvent selection	6
2.1.3 Liquid-Liquid equilibrium	7
2.2 The ternary phase diagram	8
2.2.1 Tie-line correlation for ternary systems	13
2.2.1.1 Bachman correlation	14
2.2.1.2 Othmer and Tobias correlation	14
2.2.1.3 Ishide correlation	15
2.2.1.4 Hand correlation	15
2.3 Calculation method for extraction	16
2.3.1Single stage extraction	16
2.3.2 Multi stage extraction	17
2.3.2.1 Multi stage extraction with cross flow	17
2.3.2.2 Multi stage extraction with counter current flow	19
2.4 Physical properties in Liquid-Liquid extraction	20
2.5 Liquid-Liquid extraction equipment	22
2.6 Distillation	30
2.6.1 Vapor-Liquid equilibrium	30
2.6.2 Vapor-Liquid data introduction	32
2.6.3 Thermodynamic of vapor-liquid equilibrium	33
2.6.3.1 Single- component systems	33
2.6.3.2 Multi- component systems	34
2.0.4 EXPRESSION FOR MIDIAR EXCESS GIDDE Energy	35 25
2.0.4. LINON-KANGOM TWO IIQUIG MODEL(INKIL)	35
2.6.4.2 Universal Quasi chemical theory model(UNIOUAC)	3/

2.6.4.3 Universal Functional activity coefficient(UNIFAC)	38
2.6.5 Methods of distillation	39
2.6.6 Binary distillation	46
2.6.6.1Operating line	48
CHAPTER THREE.MATERIALS AND METHODS	
3.1Determination of Liquid-Liquid equilibrium	54
3.1.1 Selection of Liquid-Liquid equilibrium system	54
3.1.2 Apparatus required	54
3.1.3 Procedure	55
3.1.3.1 Mutual solubility	55
3.1.3.2 Tie-lines	56
3.1.3.2.1 Tie-line correlating models	56
3.2 Determination of vapor-liquid equilibrium	61
3.2.1 Selection of vapor-liquid equilibrium system	61
3.2.2 Apparatus required	61
3.2.3 Procedure	61
3.2.4 Experimental and predicted of vapor-liquid equilibrium	63
3.3 Calculation for countercurrent extraction column design	66
3.3.1Determination of mixing point composition	67
3.3.1Determination of mixing point composition	67
3.3.3Determination the difference point	68
3.3.4The graphical construction	68
3.3.5 McCabe - Thiele diagram	69
3.3.6 Determination of the extraction and raffinate	70
3.4 sieve-plate extractor	70
3.5Column perforations	70
3.5.1The velocity through perforations	70
3.5.2 The orifice diameter to jet diameter ratio	71
3.5.3 Peroration area	71
3.5.4 Number of perforations	71
3.5.5 Plate area for perforations	71
3.5.6 Downspouts	71
3.5.7 Downspouts area	72
3.5.81otal plate area	72
3.5.9 Tower diameter	72
3.5.10 Stage efficiency	72
3.5.11 Number of actual stages	72
3.5.12 lower height	72
3.6 Calculation procedure for Dinary distillation column design	/3
3.6.1 Determination of the number of theoretical stages	73
3.6.2 Determination of process operation variables	/4
3.6.2.1 Determination of the wife write	74
3.6.2.2 Determination of the reflux ratio	74

3.6.2.3 Determination of the molar flow rate of liquid and vapor	76
3.6.2.4 Number of actual plate	/6
3.6.2.5 The flooding velocity	/6
3.6.2.6 The liquid-vapor flow factor	//
3.6.2.7 Design at 80% flooding	//
3.6.2.8 Maximum volumetric flow-rate	77
3.6.2.9 Net area required	/8
3.6.2.10 Down comer area as 12% of total column cross section	/8
area	
3.6.2.11 Determination of column diameter	78
3.6.2.12 Down comer	78
3.6.2.12.1 Total column cross-sectional area	78
3.6.2.12.2 Cross-sectional area of downcomer	78
3.6.2.13 Plate design	79
3.6.2.13.1Net area	79
3.6.2.13.2 Active area	79
3.6.2.13.3 Hole area	79
3.6.2.14 Weir length	79
3.6.2.15 Entrainment	79
3.6.2.16 Weeping	79
3.6.2.17 Weir crest	80
3.6.2.18 Actual minimum vapor velocity	80
CHAPTER FOUR. RESULTS AND DISCUSSION	
4.1 Design of asieve- tray extraction column	81
4.2 Design of asieve-tray distillation column	102
CHAPTER FIVE.CONCLUSION& ECOMMENDATIONS	
5.1Conclusion	118
5.2 Recommendations	119
References	120
APPENDIX.A Liquid and Vapor-Liquid Equilibrium Data	
A.1 Liquid-Liquid Equilibrium Data	124
A.2 Vapor-Liquid Equilibrium Data	131
APPENDIX.B Hand's Correlation	
B.1 Hand's Correlation of Liquid-Liquid Equilibrium systems	139
APPENDIX.C Experimental and predicted Liquid and	
Vapor-Liquid Equilibrium	1.40
C.1 Experimental and predicted Liquid-Liquid Equilibrium	140
ADDENDIX D Liquid and Vapor Liquid Equilibrium	122
APPENDIA: D LIQUIO ANO VAPOT-LIQUIO EQUIIDRIUM CURVES	104
D.1 LIQUIA-LIQUIA EQUILIDIUM CURVES	104
D.2 vapor- Liquid Equilibrium curves	1/0

APPENDIX.E Aspen pulse soft ware Design	
E.1 Extraction column	175
E.2 Distillation column	179

LIST OF TABLES

Title	Page
	Number
Table(3.1): water (A)-acetic acid(C)-isopropyl ether(S) equilibrium	56
data at 293k and 1atm	
Table(3.2): Hand's equation for system (water (A)-acetic acid (C)	57
-isopropyl ether(S) equilibrium data at 293k and 1atm	
Table(3.3):Experimental and predicted Liquid-Liquid equilibrium	58

data For system (water (A)-acetic acid (C) -isopropyl ether(S) at 293k and 1atm	
Table(3.4): The different between Experimental and predicted	59
Liquid-Liquid equilibrium data For system (water (Å)-acetic acid	
(C) -isopropyl ether(S) equilibrium data at 293k and 1atm	
Table(3.5):Error between Experimental and predicted Liquid-	60
Liquid equilibrium data For system (water (A)-acetic acid (C) -	
isopropyl ether(S) equilibrium data at 293k and 1atm	
Table(3.6):Experimental of Vapor-Liquid equilibrium of	63
Benzene(A)-Toluene(B)at 1atm	
Table(3.7): Experimental and predicted Vapor-Liquid equilibrium of	64
Benzene(A) -Toluene(B)at 1atm	
Table(3.8): The different between Experimental and predicted	65
Vapor-Liquid equilibrium of Benzene(A) -Toluene(B)at 1atm	
Table(3.9): Error between Experimental and predicted Vapor-Liquid	65
equilibrium of Benzene(A) -Toluene(B)at 1atm	
Table(4.1):Equilibrium data of ternary system(water(A)-acetic	81
acid(B) Isopropyl ether(S) at 293k and 1atm	01
Table(4.2):Operating line data	86
Table(4.3):Equilibrium curve data	87
Table(4.4):Extract and Raffinate concentration profiles	88
Table(4.5):Flow rate profiles	94
Table(4.6):The Design condition data	96
Table(4.7):Summary of Design results	100
Table(4.8): Comparison of Hand calculation using Aspen soft ware	100
Table(4.9): Vapor-Liquid equilibrium data	102
Table(4.10): Composition of feed, overhead product and bottom	103
Table(4.11): Molar flow rate of liquid and vapor in rectifying and	106
stripping section	
Table (4.12) Summary of design results	116
Table(4.13):Comparison of Hand calculation using Aspen soft ware	116
Table(A.1.1): water(A)-acetic acid(C) (Cychexyl acetate-	124
Cychexanol)(S) at 298.15k	
Table(A.1.2): water(A)-acetic acid(C)-Ethyl acetate (S) at 303.15k	124
Table(A.1.3): water(A)-ethanol (C)-benzene (S) at298.15k	125
Table(A.1.4): Butyl acetate(A)-methanol (C)-water (S) at 303.15k	125
Table(A.1.5): 2, 2,4-trimethyl pentane (A)-benzene (C)-furfural (S)	126
at 298.15k	
Table(A.1.6): Diethyl ether(A)-acetone (C)-water (S) at 303.15k	126
Table(A.1.7): Butanol(A)-ethanol (C)-water (S) at 298.15k	127
Table(A.1.8): water(A)-Butyric acid (C)-1-Butanol (S) at 298.15k	127
Table(A.1.9): Benzene(A)-1-propanol (C)-water (S) at 303.15k	128
Table(A.1.10): Cyclohexane(A)-Benzene (C)-furfural (S))at298k	129

Table(A.1.11): 1,1,2-tri chloro ethane (A)-Acetone (C)-water (S) at	130
Table(A.2.1):Vapor-Liquid Equilibria of Methyl acetate(1)- Methanol at 101.3kpa	131
Table(A.2.2): Vapor-Liquid Equilibria of p-xylene(1)-o-xylene(2) at 101.3kpa	132
Table(A.2.3): Vapor-Liquid Equilibria of Butanone(1)-N,N- dimethyl-formamide (2) at 79.99kpa	133
Table(A.2.4): Vapor-Liquid Equilibria of Cyclohexane(1)-n- heptane(2) at 100.65kpa	133
Table(A.2.5): Vapor-Liquid Equilibria of m-xylene(1)-o-xylene(2) at 100.65kpa	134
Table(A.2.6): Vapor-Liquid Equilibria of Mesitylene(1)-1-octanol(2) at 97.3kpa Table(A.2.7): Vapor Liquid Equilibria of Mesitylene(1) 1	135
Heptanol(2) at 97.3kpa Table(A 2 8): Vapor-Liquid Equilibria of 2-	130
Methyltetrahydrofuran(1)- Cumene (2) at 97.3kpa Table(A 2 9): Vapor-Liquid Equilibria of Carbon tetra chloride (1) -	138
Benzene (2) at101.3kpa Table(A.2.10): Vapor-Liquid Equilibria of 1,1,1,2,3,3,3heptafluoro	138
proane(1)-ethyl fluoride(2) at101.3kpa Table(B.1.1): Hand's correlation of water(A)-acetic acid(C)-Mixed	139
solvent(Cychexyl acetate- Cychexanol)(S) at298.15k Table(B.1.2): Hand's correlation of water(A)-acetic acid(C)-Ethyl	139
Table(B.1.3): Hand's correlation of water(A)-ethanol (C)-benzene (S) at 298.15k	140
Table(B.1.4): Hand's correlation of Butyl acetate(A)-methanol (C)- water (S) at 303.15k	140
Table(B.1.5): Hand's correlation of 2, 2,4-trimethyl pentane (A)- benzene (C)-furfural (S) at 298.15k	141
Table(B.1.6): Hand's correlation of Diethyl ether(A)-acetone (C)- water (S) at 303.15k	141
(S) at 298.15k	142
Butanol (S) at 298.15k	142
water (S) at 303.15k	143
furfural (S) at 298.15k Table(P. 1.11): Hand's correlation of 1.1.2 tri chloroothang (A)	144
Table(D.1.11): Hallu's correlation 011,1,2-tri chioroethalle (A)-	145

Acetone (C)-water (S) at 298.15k	
Table(C.1.1): Experimental and Predicted Liquid-Liquid	146
equilibrium for system(water(A)-acetic acid(C)-Mixed	
solvent(Cychexyl_acetate-Cychexanol)(S) at 298.15k	
Table(C.1.2): Experimental and Predicted Liquid-Liquid	146
equilibrium for system(water(A)-acetic acid(C)-Ethyl acetate (S) at 303.15k	
Table(C.1.3): Experimental and Predicted Liquid-Liquid	147
equilibrium for system(water(A)-ethanol (C)-benzene (S) at298.15k	
Table(C.1.4): Experimental and Predicted Liquid-Liquid	147
equilibrium for system(Butyl acetate(A)-methanol (C)-water (S) at 303.15k	
Table(C.1.5): Experimental and Predicted Liquid-Liquid	148
equilibrium for system(2, 2,4-trimethyl pentane (A)-benzene (C)- furfural (S) at298.15k	
Table(C.1.6): Experimental and Predicted Liquid-Liquid	149
equilibrium for system(Diethyl ether(A)-acetone (C)-water (S) at 303.15k	
Table(C.1.7): Experimental and Predicted Liquid-Liquid	150
equilibrium for system(Butanol(A)-ethanol (C)-water (S) at 298.15k	
Table(C.1.8): Experimental and Predicted Liquid-Liquid	151
system(water(A)-Butyric acid (C)-1-Butanol (S) at 298.15k	
Table(C.1.9): Experimental and Predicted Liquid-Liquid	152
equilibrium for system(Benzene(A)-1-propanol (C)-water (S) at 303.15k	
Table(C.1.10): Experimental and Predicted Liquid-Liquid	153
equilibrium for system(Cyclohexane(A)-Benzene (C)-furfural	
(S))at 298.15k	
Table(C.1.11): Experimental and Predicted Liquid-Liquid	154
equilibrium for system(1,1,2-tri chloroethane (A)-Acetone (C)-	
water (S) at298.15k	
Table(C.2.1): Experimental and Predicted Vapor-Liquid Equilibria	155
of Methyl acetate(1)-Methanol at101.3kpa	
Table(C.2.2): Experimental and Predicted Vapor-Liquid Equilibria	156
of p-xylene(1)-o-xylene(2) at101.3kpa	
Table(C.2.3): Experimental and Predicted Vapor-Liquid Equilibria	157
of Butanone(1)-N,N-dimethyl-formamide (2) at 79.99kpa	
Table(C.2.4): Experimental and Predicted Vapor-Liquid Equilibria	157
of Cyclohexane(1)-n-heptane(2) at100.65kpa	
Table(C.2.5): Experimental and Predicted Vapor-Liquid Equilibria	158

of m-xylene(1)-o-xylene(2) at100.65kpa	
Table (C.2.6): Experimental and Predicted Vapor-Liquid Equilibria	159
of Mesitylene(1)-1-octanol(2) at 97.3kpa	
Table (C.2.7): Experimental and Predicted Vapor-Liquid Equilibria	160
of Mesitylene(1)-1-Heptanol(2) at97.3kpa	
Table (C.2.8): Experimental and Predicted Vapor-Liquid Equilibria	161
of 2-Methyltetrahydrofuran(1)- Cumene (2) at 97.3kpa	
Table (C.2.9): Experimental and Predicted Vapor-Liquid Equilibria	162
of Carbon tetra chloride (1) - Benzene (2) at101.3kpa	
Table(C.2.10): Experimental and Predicted Vapor-Liquid Equilibria	163
of 1,1,1,2,3,3,3heptafluoro proane(1)-ethyl fluoride(2) at101.3kpa	
Table (E.1.1):Stream Results	175
Table (E.1.2):Column performance	176
Table (E.1.3):Profiles	177
Table (E.1.4): water (A)-acetic acid(C)-DIISO(S) equilibrium data	178
at 293k and 1atm	
Table (E.2.1):Results	179
Table (E.2.2):Mixed	180
Table (E.2.3):Results	181
Table (E.2.4):Profile	182
Table (E.2.5):Results	183
Table (E.2.6): Stream Results of benzene and toluene	184
Table (E.2.7):Condenser/Top stage performance	185
Table(E.2.8):Reboiler/Bottom stage performance	186
Table(E.2.9):Trayed section	188
Table(E.2.10):Tray sizing results	188

LIST OF FIGURES

Title	Page
	Number
Figure(2.1):A general extraction column	6
Figure(2.2):Equilateral-triangle diagram	9
Figure(2.3):Type(I) equilibrium diagram	11
Figure(2.4):Type(II)equilibrium diagram	12
Figure(2.5):Right-triangular diagram	13
Figure(2.6):Equilateral-triangular plot	14
Figure(2.7):Hand type equilibrium diagram	15
Figure(2.8):Single stage extraction	16
Figure(2.9):Operating diagram for single stage extraction	17
Figure(2.10):Multi stage extraction with cross flow	17
Figure(2.11):Multi stage extraction with cross flow triangle diagram	18
Figure(2.12):Multi stage extraction with countercurrent flow	19

Figure(2.13):Multi stage extraction with countercurrent flow diagram	20
Figure(2.14):Mixer settler	22
Figure(2.15):Tray columns	24
Figure(2.16):Spray columns	25
Figure(2.17):Packed towers	26
Figure(2.18):Rotating Disc contactor	27
Figure(2.19):Pluse column	28
Figure(2.20):Centrifugal contactor	29
Figure(2.21):Temperature compositon diagrams	31
Figure(2.22):Vapor composition as afunction of liquid composition at	31
constant pressure	
Figure(2.23):Differential distillation process	41
Figure(2.24):Fractionating column	44
Figure(2.25):Sieve plate	45
Figure(2.26):Flash distillation	46
Figure(2.27): Asimple distillation column	47
Figure(2.28)a:McCabe-Thiele operating line for the rectifying section	48
Figure(2.28)b:McCabe-Thiele operating line for the rectifying	50
section	
Figure(2.29)a:McCabe-Thiele operating line for the stripping section	51
Figure(2.29)b:McCabe-Thiele operating line for the stripping section	52
Figure(2.30): Mass balance for the feed stage	53
Figure(3.1):Liquid-Liquid equilibrium and solubility cell	55
Figure(3.2): Hand's Plot for the correlation of tie-line for system	58
water(A)-acetic acid(C)-isopropyl ether(S) at 293k and1atm	
Figure(3.3):Othmer vapor- equilibrium	62
Figure(3.4):Vapor-Liquid equilibrium of Benzene(A)-Toluene(B) at	63
1atm	
Figure(3.5):Schematic diagram of counter current extraction	66
Figure(3.6):Counter current extraction triangle	68
Figure(3.7):Construction of the equilibrium operating curves and step	69
off the number of theoretical stages	
Figure(3.8):Distillation column	73
Figure(3.9):Determination of the number of equilibrium stages and	75
feed stage location	
Figure(4.1):Schematic diagram of counter extraction	82
Figure(4.2):The location of the mixing point	83
Figure(4.3): The location of the extract composition	84
Figure(4.4): The location of the difference point	85
Figure(4.5):The left triangular graphical	86
Figure(4.6):Construction of the equilibrium ,operating curves and	88
step off the number of the theoretical stages	
Figure(4.7):Diagram of extraction and raffinate flow rate	95

Figure(4.8):Single sieve plate	99
Figure(4.9):Sieve-tray extraction tower	101
Figure(4.10):Material balance at top and bottom of column	104
Figure (4.11):Plot for obtain equilibrium stages by McCabe and	105
Thiele method	
Figure(4.12):Flooding velocity, sieve plates	108
Figure(4.13):Typical cross-flow rate(sieve)	111
Figure(4.14): Relation between downcomer area and weir length	112
Figure(4.15): Entrainment correlation for sieve plates	113
Figure(4.16): Weep-point correlation	115
Figure(4.17): Sieve-tray distillation tower	117
Figure (D.1.1): Hand's correlation for system(water(A)-acetic	164
acid(C)- (Cyclochexyl acetate-Cyclochexanol)(S))at 298.15k	
Figure (D.1.2): Hand's correlation for system(water(A)-acetic	164
acid(C)-Ethyl acetate (S))at 303.15k	
Figure (D.1.3): Hand's correlation for system(water(A)-ethanol (C)-	165
benzene(S))at298.15k	
Figure(D.1.4): Hand's correlation for system(Butyl acetate(A)-	165
methanol (C)-water (S))at 303.15k	
Figure(D.1.5): Hand's correlation for system(2, 2,4-trimethyl pentane	166
(A)-benzene (C)-furfural (S))at 298.15k	
Figure(D.1.6): Hand's correlation for system(Diethyl ether(A)-	166
acetone (C)-water (S))at 303.105k	
Figure(D.1.7): Hand's correlation for system(Butanol(A)-ethanol	167
(C)-water (S))at 298.15k	
Figure(D.1.8): Hand's correlation for system(water(A)-Butyric acid	167
(C)-1-Butanol (S))at 298.15k	
Figure(D.1.9): Hand's correlation for system(Benzene(A)-1-propanol	168
(C)-water (S))at 303.15k	
Figure(D.1.10): Hand's correlation for system(Cyclohexane(A)-	168
Benzene (C)-furfural (S))at 298.15k	
Figure(D.1.11): Hand's correlation for system(1,1,2-trichloroethane	169
(A)-Acetone (C)-water (S))at 298.15k	
Figure(D.2.1):Vapor-Liquid Equilibria of Methyl acetate(1)-	170
Methanol at 101.3kpa	
Figure(D.2.2):Vapor-Liquid Equilibria of p-xylene(1)-o-xylene(2) at	170
101.3kpa	
Figure(D.2.3):Vapor-Liquid Equilibria of Butanone(1)-N,N-dimethyl	171
-formamide (2) at 79.99kpa	
Figure(D.2.4):Vapor-Liquid Equilibria of Cyclohexane(1)-n-	171
heptane(2) at 100.65kpa	
Figure(D.2.5):Vapor-Liquid Equilibria of m-xylene(1)-o-xylene(2) at	172
100.65kpa	

Figure(D.2.6): Vapor-Liquid Equilibria of Mesitylene(1)-1-octanol(2)	172
at 97.3kpa	
Figure(D.2.7): Vapor-Liquid Equilibria of Mesitylene(1)-1-	173
Heptanol(2) at 97.3kpa	
Figure(D.2.8): Vapor-Liquid Equilibria of 2-	173
Methyltetrahydrofuran(1)- Cumene (2) at 97.3kpa	
Figure(D.2.9): Vapor-Liquid Equilibria of Carbon tetra chloride (1) -	174
Benzene (2) at 101.3kpa	
Figure(D.2.10): Vapor-Liquid Equilibria of 1,1,1,2,3,3,3heptafluoro	174
proane(1)-ethyl fluoride(2) at 101.3kpa	
Figure(E.1.1):Ternary map for water-acetic acid-DIISO	178
Figure(E.2.1):Temperature profile	187
Figure(E.2.2):Vapor compostion profiles	187

LIST OF NOMENCLATURE

Diluent

Solute Solvent

Concentration of diluent in diluent rich phase Concentration of solute in diluent rich phase Concentration of solvent in solvent rich phase Concentration of diluent in solvent rich phase Concentration of solvent in diluent rich phase Concentration of solvent in diluent rich phase Feed Extract Raffinate Mixture Non-Random Two Liquid model Universal Quasi-Chemical Theory model Universal Functional Activity Coefficient Weight fraction of substance (C) in Feed Weight fraction of substance (C) in Solvent Weight fraction of substance (C) in Extract Weight fraction of substance (C) in Raffinate Weight fraction of substance (C) in Mixture The difference point The correlation factor Jet diameter Orifice diameter Density of continuous phase Density of dispersed phase Interfacial tension The velocity through perforations (orifice) Perforation area Volumetric rate of dispersed solution Volumetric rate of continuous solution Number of perforations Plate area for perforations The continuous phase velocity The terminal velocity Viscosity of continuous solution Acceleration of gravity Conversion factor Downspout area Total plate area **Tower Diameter** Stage Efficiency The number of actual stages The number of theoretical stages **Tower Height** The tray spacing Molar flow rate of feed Molar flow rate of over head product Molar flow rate of bottom product Mole fraction of light liquid Mole fraction of light in over head product Mole fraction of light in bottom product The minimum reflux ratio The Reflux Ratio Liquid flow in rectifying section Vapor flow in rectifying sections

 R^2

Liquid flow in stripping sections Vapor flow in stripping sections Flooding vapor velocity Density of liquid Density of vapor The liquid-vapor flow factor Volumetric flow-rate Molecular weight Net area required Down comer area Column diameter Cross-sectional area of downcomer Net area Active area Hole area Weir length Entrainment Minimum vapor velocity through the holes Hole diameter Weir crest