الآية
قال تعالى: -

بسم الله الرحمن الرحيم

إنَّ الَّذينَ آمَنَواَ وَعَمِلُواَ الصَّالِحَاتِ يَهْدِيهِمْ رَبُّهُمْ بإيَمَانِهِمْ تَجْرِي مِن نَّكْتِهِمْ

الأنهار في جَنَاتِ النَّعيم {9} دَعْوَاهُمْ

فيها سُبْحَانَهُ اللَّهُمَّ وَتَحْيِينَهُمْ فيها سَلَامُ

وآخِرُ دَعْوَاهُمْ أنَّ الحَمْدُ لِلَّهِ رَبُّ

الْعَالَمِينَ {10}.

صدق الله العظيم
سورة يونس
Dedication

Dedicated to

My father

My mother

My brothers

My sister
My family, friends, teachers
To whom I always respect
& love

Acknowledgement
IN THE NAME OF ALLA, MOST GRACIOUS, MOST MERCIFUL

I would like to express my gratitude to all the people who have contributed to the work. First of all, I would like to thank my supervisor Prof. Saad daoud for all the assistance and most of all, for the inspiring subject of the thesis. Special thanks to my parents, my family for their unlimited patience without limitations.
Modbus protocol is the most popular industrial protocol being used today, for good reasons. It is simple, inexpensive, universal and easy to use. Even though MODBUS has been around since the past century (nearly 30 years) almost all major industrial instrumentation and automation equipment vendors continue to support it in new products.

In this thesis, the Design and analysis of a Modbus controller on a base of Microcontroller has been discussed, including the design of the Master by mean of software on PC, and the Slave by means of hardware which includes ATmega 16 as the main part.

The main objective of this thesis is to illustrate the basic structure of Modbus controllers and how they will communicate through Modbus Protocol. The system is designed to facilitate data transmission between devices to enable different control procedures and data exchange.
مستخلص

30

AT mega 16

Slave Controller
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>II</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>III</td>
</tr>
<tr>
<td>Abstract</td>
<td>IV</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>V</td>
</tr>
<tr>
<td>List of Figures</td>
<td>VI</td>
</tr>
<tr>
<td>List of Tables</td>
<td>VIII</td>
</tr>
</tbody>
</table>

Chapter One: Introduction

1.1 General 1
1.2 Methodology 2
1.3 Problem Statement 2
1.4 Objectives 2
1.5 Thesis Layout 2
Chapter Two: Theoretical Background And Literature Review

2.1 Introduction to ModBus
 2.1.1 Transactions on Modbus Networks
 2.1.2 The Two Serial Transmission Modes
 2.1.3 Modbus Message Framing
 2.1.4 Characters Serial Transmission
 2.1.5 Error Checking Methods
 2.1.6 Data Encoding and Scaling
 2.1.7 Modbus Function Formats
 2.1.8 Function Codes Supported by Modicon Controllers

2.2 ATmega 16 Microcontroller
 2.2.1 Architectural Overview
 2.2.2 Arithmetic Logic Unit (ALU)
 2.2.3 General Purpose Register File
 2.2.4 I/O Ports
 2.2.5 USART
 2.2.6 Analog to Digital Convertor

2.3 LM35 Temperature Sensor
 2.3.1 LM35 Features

2.4 MAX232

Chapter Three: Implementation Of Modbus Controllers

3.1 Introduction

3.2 Hardware Components
 3.2.1 RS232
 3.2.2 RS-422

3.3 Software tool aspects
Figure (2-9) : USART Block Diagram 31
Figure (2-10) : Frame Formats 33
Figure (2-11): Analog to Digital Converter Block Schematic 38
Figure (2-12) : ADC Prescaler 39
Figure (2-13): LM35 Pin out 42
Figure (3-1): Circuit layout 45
Figure (3-2): PC, Circuit and Communication Elements connected together. 46
Figure (3-3): Typical RS232 wiring. 46
Figure (3-4): Typical RS-422 Wiring. 47
Figure (3-5): Block diagram of Modbus Master Application. 49
Figure (3-6): User Interface of Modbus Master application. 50

List of Tables

Table (2-1): Message Encoding. 9
Table (2-2) : ASCII Message Frame 10
Table (2-3) : RTU Message Frame 11
Table (2-4): Master Query with ASCII/RTU Framing 21
Table (2-5) : Slave Response with ASCII/RTU Framing 22
Table (2-6) : Function Codes Supported By Modicon Controllers 23
Table (2-7): the query to read the status of coils 00001 to 00009
Table (2-8): A response to the query
Table (2-9): Equations for Calculating Baud Rate Register Setting
Table (2-10) : ADC Conversion Time