Preface

This work has been carried out to reflect the importance of the antimicrobial sensitivity testing, which has been lost nowadays in Sudan. Most of the medical practitioners give the patients treatment without knowing the sensitivity of the organism and without doing culture to know the pathogen. Not only these, but also the hospitals where sensitivity testing is carried, it is done in a wrong way and the techniques are not standardized, hence, results in different laboratories cannot be compared. Also, some patients who had taken the chemotherapy come to the hospital suffering from repeated infections and complications. For this reasons, this research is done hoping to change this, for a better life.
Dedication

To the queen of my heart, the food of my soul,
to the soul of my deceased mother,
God bless her.

To my great father, Mohammed for encouraging
a variety of interests in my life.

To my brothers, sister and to every one who gave
me encouragement to successfully
finish this study.
Acknowledgment

I would like to express my sincere appreciation & deep gratitude to my supervisor Professor Samia Ahmed Gumaa for her continuous encouragement and support as well as for her understanding while I was engaged in conducting this study.

My thanks are also extended to Dr. Mohamed Baha Eldin for his valuable suggestions when reading and revising the manuscript.

Gratitude is also extended to Dr. Humodi, dean collage of medical laboratories Science, Sudan University of Science and Technology and Dr. Mohamed Sid Ahmed, dean faculty of medical laboratories AMLS.

My thanks are also for Ustaz Amin M. Ibrahim, Ustaz Sony, Ustaza Ehssan Abbas, Ustaz Salah Shanam, Ustaza Shadid Fathi, Ustaz Mohamed Nejmudin and Ustaz Samih Mohamed for helping me in the technical part of this research.

Appreciation is extended to Ustaz Omer and all the staff members of Sudan university for their great contribution.
I am indebted also to my family and relatives for their moral support and encouragement during the period of study.

Abstract

The main objectives of this study were to compare the results obtained by different methods carried for detecting the antimicrobial sensitivity testing (NCCLS table diameter method, Stokes and Kirby-Bauer comparative methods) and to compare the results when using two standard media (Muller-Hinton and Diagnostic sensitivity agar).

Fifty organisms were isolated and identified to reach these objectives. They were from two different sites, urine, and wounds. The isolates were: *Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, Staphylococcus aureus* and *Enterococcus faecalis*.

Antimicrobial sensitivity testing was carried out for each organism by the three methods on the two media. The results were recorded and analyzed to detect the differences. According to the statistical analysis, no differences were found to be between the comparative methods Stokes and Kirby-Bauer, while a significant difference was reported between them and NCCLS method. When
comparing the two media, no differences were noted, and the results were found to be similar.

كانت الهدف الأساسي من هذه الدراسة هي مقارنة النتائج التي تحرضنا عليها باستخدام طرق مختلفة لمعرفة اختبارات الحساسية ضد مضادات الميكروبات. طريقة جدول NCCLS وطريقة المقارنة (Stokes and Kirby-Bauer) وكذلك لمقارنة النتائج عند استعمال وسطين قياسيين للبكتريا هما وسط قياس الحساسية ووسط مولر-هنتون (DST and Muller Hinton).

تم عزل والتعرف على خمسين ميكروب للوصول إلى هذه الهدف وكانت من مواقع مختلفين (البول, الجروح). الميكروبات التي تم عزلها تمثلت في (المكورة العنقودية الذهبية, العقدية البرازية, الاشريكية القولونية, الكليبيسيل الرئوية, المتقلبات و الزائفة الزنجارية).

تم إجراء اختبارات حساسية مضادات الميكروبات لكل ميكروب بواسطة ثلاثة طرق على وسطي البكتريا . تم تسجيل وتحليل النتائج لمعرفة الفروقات . حسب التحليل الاحصائي لم يتم ملاحظة أي فروقات بين الطرق التي تم مقارنتها بينما وجد أن هناك فرق مميز تم تسجيله بين طريقة NCCLS وبين الطرق الاخرى.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>I</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>II</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>III</td>
</tr>
<tr>
<td>Abstract (English)</td>
<td>IV</td>
</tr>
<tr>
<td>Abstract (Arabic)</td>
<td>V</td>
</tr>
<tr>
<td>Table of contents</td>
<td>IX</td>
</tr>
<tr>
<td>List of tables</td>
<td>X</td>
</tr>
<tr>
<td>List of figures</td>
<td>XI</td>
</tr>
<tr>
<td>Chapter 1: Introduction and literature review</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Antibiotics</td>
<td>4</td>
</tr>
<tr>
<td>1.1.1 Definition</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2 Early history</td>
<td>5</td>
</tr>
<tr>
<td>1.1.3 Early developments of disc diffusion methods</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3.3 Standardization</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3.2 Development of a standard disk diffusion procedure</td>
<td>7</td>
</tr>
<tr>
<td>1.1.3.3 Limitations</td>
<td>9</td>
</tr>
<tr>
<td>Objectives</td>
<td>1</td>
</tr>
</tbody>
</table>

VI
Chapter 2: Materials and Methods

2.1 Materials

2.1.1 Media

2.1.1.1 Mueller Hinton agar
2.1.1.2 Diagnostic sensitivity agar
2.1.1.3 Blood agar
2.1.1.4 Chocolate agar
2.1.1.5 MacConkey agar
2.1.1.6 CLED agar (cystine-lactose-electrolyte deficient medium)
2.1.1.7 Mannitol salt agar
2.1.1.8 Peptone water
2.1.1.9 Aesculin agar slant
2.1.1.10 Urea agar base
2.1.1.11 Citrate agar
2.1.1.12 Motility test medium
2.1.1.13 Kligler iron agar (KIA)
2.1.1.14 DNAse agar

2.1.2 Reagents

2.1.2.1 Stains used in Gram stain method
2.1.2.2 H₂O₂ for catalase test
2.1.2.3 Oxidase test (Cytochrome Oxidase)
2.1.2.4 Kovac´s reagent for indole test
2.1.2.5 Plasma for coagulase test 17
2.1.2.6 Antimicrobial discs 18
2.1.2.7 Control organisms 19
2.1.2.8 Turbidity standard 19
2.1.3 Instruments 19
2.2 Methods 19
2.2.1 Study area 19
2.2.2 Study population 20
2.2.3 Study duration 21
2.2.4 Sample collection 21
2.2.5 Sample processing 21
2.2.6 Culturing of the specimens 22
2.2.7 Colonial morphology 22
2.2.8 Gram stain 23
2.2.9 Biochemical reactions 24
2.2.9.1 Catalase test 24
2.2.9.2 Oxidase test 25
2.2.9.3 Indole test 25
2.2.9.4 Urease test 26
2.2.9.5 Citrate test 26
2.2.9.6 Motility test using semi solid agar 27
2.2.9.7 Kligler iron agar 27
2.2.9.8 DNase test 29
2.2.9.9 Sensitivity testing technique 30
2.2.9.9.1 Disc diffusion techniques

2.2.9.9.2 Types of disc diffusion methods:

2.2.9.9.2.1 Same-plate comparative disc diffusion tests (Stokes method)

2.2.9.9.2.2 Kirby-Bauer Method

2.2.9.9.2.3 National Committee for Clinical Laboratory standard (NCCLS)

2.2.9.9.3 Methods of sensitivity testing

2.2.9.9.3.1 Kirby-Bauer methods of sensitivity

2.2.9.9.3.2 Stokes method

2.2.9.9.3.3 NCCLS method

2.2.9.9.4 Interpretation of results

Chapter 3: Results

Chapter 4:

Discussion

Conclusions

Recommendations

References

Appendix 1 (media)

Appendix 2 (reagents)

Appendix 3 (standard scale)
List of tables:

Table 3.1: Results of Biochemical reactions of Gram - ve bacilli.

Table 3.2: Results of Biochemical reactions of Gram + ve cocci.

Table 3.4 a, b, c, d: Sensitivity testing results of *Staphylococcus aureus*.

Table 3.5a, b: Sensitivity testing results of *Enterococcus faecalis*.

Table 3.6a, b, c, d: Sensitivity testing results of *E. coli*.

Table 3.7a, b, c, d: Sensitivity testing results of *Klebsiella pneumoniae*.

Table 3.8a, b, c: Sensitivity testing results of *Proteus vulgaris*.

Table 3.9a, b, c: Sensitivity testing results of *Psuedomonas aeruginosa*.
List of figures:

Figure 2.1: Rotary plating method and Comparative disk diffusion test (Stokes).

Figure 2.2: Diagrammatic representation of the antibiotic concentration gradient produced by diffusion from a paper disc (D) on an agar medium.

Figure 3.1: Sensitivity pattern of the organisms used in the study on the two media by NCCL method.

Figure 3.2: Sensitivity pattern of the organisms used in the study on the two media by Kirby-Bauer method.

Figure 3.3: Sensitivity pattern of the organisms used in the study on the two media by Stokes method.

Figure 3.4: Percentage of the organisms in the samples.

Figure 3.5: Percentage of the organisms in each sample.

Figure (3.6): Culture of *Staphylococcus aureus* on blood agar showing white Colonies.

Figure 3.7: Culture of *Staphylococcus aureus* on CLED Showing Lactose fermenter colonies.
Figure 3.8: Culture of *Enterococcus faecalis* on blood agar showing non haemolytic colonies.

Figure 3.9: Culture of *Enterococcus faecalis* on MacConkey agar showing Lactose fermenter colonies.

Figure 3.10: Culture of *Klebsiella pneumoniae* on MacConkey agar showing large lactose fermenter colonies.

Figure 3.11: Culture of *E. coli* on MacConkey agar showing Lactose fermenter colonies.

Figure 3.12: Culture of *E. coli* on CLED agar showing Lactose fermenter colonies.

Figure 3.13: Culture of *Pseudomonas aeruginosa* on MacConkey agar, showing non lactose fermenting colonies with green pigmentation.

Figure 3.14: Susceptibility test of *Staphylococcus aureus*.

Figure 3.15: Susceptibility test of *E. coli* by Kirby- Bauer method.

Figure 3.16: Susceptibility test of *Pseudomonas aeruginosa*.

Figure 3.17: Susceptibility test of *Enterococcus faecalis*.
Figure 3.18: Susceptibility test by rotary stokes disk diffusion method.

Figure 3.19: Susceptibility test by Comparative Stokes disk diffusion test.