ACKNOWLEDGMENT

My deepest gratitude goes to my supervisor, Prof. Dr. Sabir M Salih, for his technical and moral support in the initiation and successful completion of the research. His valuable criticism, fruitful discussion and continuous guidance were the source of great inspiration to me.

I greatly appreciate the support of Dr. Ali Humdan, and Dr Tawfig Jamal Eldeen, deserves special acknowledgement for their continued support during this research. Special thanks to Dr. Mohammed Mosdaq Elawad for his help and for his direction with this project, and allowing me to use this subject for my thesis.

It is a great pleasure to express my gratitude and indebtedness to Professor Salah Numan from Omdurman Islamic University - Faculty of Arts - Department of English for proof reading the thesis manuscript.

ABSTRACT

The objective of this study is to investigate the impact of the Exhaust Gas Recirculation (**EGR**) or/and the Water Injection (**WI**) on the Turbocharged Diesel Engine performance (Brake Power (bp), Brake Specific Fuel Consumption (bsfc), and Brake Thermal Efficiency (BTE)), in addition to examining the effects on exhaust gas emissions such as Nitrogen Oxides (NO_x), Carbon Monoxide (CO).

A series of experiments were carried out in Sudan University of Science and Technology Laboratories on a Turbocharged Diesel Engine. The experiments results obtained showed that, the brake power decreased in the presence of EGR and continues to decrease as the ratio of EGR is increased, while the power increased by using the low and medium rates of injected water at the mid and high engine speeds. The combination of 5% EGR and low injected water rates increased the engine power. %10 of EGR ratios and less water rates caused a decrease in the power, but still are greater than that obtained by EGR setups.

The bsfc increased by using EGR system, while the WI system was found to decrease the bsfc, mostly in the low and medium rates of injected water. Much water rate has led to increase the bsfc strongly and has achieved results between those obtained by the TC and NA engine. Combined 5% EGR and less water rates are shown to decrease the bsfc, and are equal to less than that given by the TC engine particularly at mid and high engine speeds. Increasing EGR ratio to 10% and less water volumes setups have kept the values of the bsfc between the TC and EGR setups.

The Brake Thermal Efficiency (BTE) decreased when using the EGR system, while it increased by the low and medium volumes of injected water at the mid and high engine speeds. The BTE given by Combined 5% EGR and less water volumes is found to be greater than those given by the TC engine, mostly at the mid and high engine speeds. Combined 5% and much water caused to decrease the BTE and were found less than those given by the TC engine.

The emission of NO_X is reduced by the EGR system. WI affected positively in reducing the NO_X emission, and as the volume of injected water increased the emission of NO_X is decreased. The combined system caused a reduction in the emission of NO_X significantly.

CO is increased by the EGR system, while the WI is caused to decrease the CO emission. This might be attributable to the water-gas shift reaction, in addition to the positive effect of WI on combustion efficiency. Emission of CO in the presence of the combined setups increased significantly. 5% EGR + WI systems emitted CO more than that obtained by 5% EGR. EGR ratio greater than 5% and WI setups emitted CO greater than that given by EGR setups.

الملخص

الغرض من هذه الدراسة هو التحقيق في الآثار المترتبة على إعادة تدوير جزء من غاز العادم (EGR) أو/ و حقن الماء (WI) على أداء محرك الديزل مثل (القدرة الفرملية (BP), الاستهلاك النوعي للوقود (bsfc)، و الكفاءة الحرارية (BTE)). بالإضافة إلى دراسة التأثير على انبعاثات غازات العادم مثل أكاسيد النيتروجين (NO_x) وأول أكسيد الكربون (CO).

أجريت سلسلة من التجارب في معامل جامعة السودان للعلوم والتكنولوجيا على محرك ديزل. اظهرت النتائج أن القدرة الفرملية انخفضت في وجود نظام تدوير غاز العادم, ويزيد الانخفاض مع زيادة نسب اضافة غاز العادم. نظام حقن الماء يزيد القدرة الفرملية للمحرك, عند حقن معدلات الماء القليلة والمتوسطة عند سرعات المحرك المتوسطة والعالية. عند دمج نظام تدوير العادم بنسبة 5% مع حقن الماء بالمعدلات القليلة والمتوسطة اظهرت النتائج ان القدرة الفرملية زادت مقارنة بقدرة المحرك ذو الشاحن التوربيني. 10% من نظام تدوير غاز العادم مع حقن الماء بالمعدلات القليلة والمتوسطة خفضت القدرة ومازالت اكبر من القدرة الناتجة من استخدام نظام تدوير غاز العادم .

الاستهلاك النوعي للوقود (bsfc) زاد باستخدام نظام تدوير غاز العادم, ونظام حقن الماء خفض (bsfc) باستخدام المعدلات القليلة والمتوسطة عند سرعات المحرك المتوسطة والعالية. عند دمج نظام تدوير غاز العادم بنسبة 5% مع حقن الماء بالمعدلات القليلة والمتوسطة, اظهرت النتائج ان (bsfc) انخفض مقارنة بالمحرك ذو الشاحن التوربيني. زيادة نسبة تدوير الغاز الى 10% مع حقن الماء بالمعدلات القليلة والمتوسطة تسببت في زيادة (bsfc) مقارنة بالمحرك ذو الشاحن التوربيني وما زالت اقل من نتائج نظام تدوير غاز العادم.

الكفاءة الحرارية انخفضت مع استخدام نظام التدوير, وتنخفض اكثر مع زيادة نسبة تدوير الغاز. حقن الماء زاد الكفاءة الحرارية للمحرك باستخدام معدلات ماء قليلة ومتوسطة عند السرعات المتوسطة والعالية. دمج 5% من تدوير غاز العادم مع حقن معدلات ماء قليلة ومتوسطة أدت الى زيادة في الكفاءة الحرارية مقارنة بنتائج المحرك ذو الشاحن التوربيني. انخفضت الكفاءة الحرارية عند حقن الماء بمعدلات اكبر في وجود 5% من غاز العادم وكانت النتائج اقل مقارنة بنظام اعادة تدوير غاز العادم.

انخفض انبعاث (NO_X) باستخدام نظام تدوير العادم ويزيد الانخفاض بزيادة نسبة غاز العادم مع الهواء. نظام حقن الماء خفض ايضا انبعاث (NO_X) ويزيد الانخفاض بزيادة معدل الماء المحقون. دمج النظامين أدى الى انخفاض كبير في انبعاث (NO_X).

نظام تدوير غاز العادم زاد من انبعاث (CO), نظام حقن الماء خفض من انبعاث (CO)عند الحقن بمعدلات قليلة ومتوسطة , الانخفاض يعود الى زيادة كفاءة الاحتراق الناتج من زيادة كثافة الهواء الداخل للمحرك , انخفاض انبعاث (CO) يعود ايضا إلى تفاعل الغاز مع الماء ليتكون غاز ثاني اكسيد الكربون ويتصاعد غاز الهيدورجين. زاد انبعاث (CO) بشكل ملحوظ عند حقن الماء بمعدلات كبيرة. كما يزيد عند دمج 5% من غاز العادم مع حقن الماء بمعدلات قليلة ومتوسطة مقارنة بالكمية المنبعثة في حالة استخدام نظام تدوير العادم.

TABLE OF CONTENTS

Acknowledgements	Ι
Abstract	II
Table of Contents	IV
List of Figures	IX
List of Tables	X
List of Abbreviations	XIII

CHAPTER ONE INTRODUCTION

1-1INTRODUCTION	2
1-2STATEMENT OF THE PROBLEM	4
1-40BJECTIVE OF THE RESEARCH	5
1-5RESEARCH APPROACH	5
1-6ORGANIZATION OF THIS THESIS	6

CHAPTER TWO LITERATURE REVIEW

2-1 INTRODUCTION	8
2-2 NITROGEN OXIDES (NO _X)	9
2-2-1 Mechanism of NO _X Formations	11
2-2-2 Effects of Nitrogen Oxides	15
2-2-3 Parameters Affecting Engine's NO _X Emissions	17
2-2-3-1Equivalence Ratio	17
2-2-3-2 Engine speeds	18
2-2-3-3 Compression Ratio	19
2-2-3-4 Turbocharger Pressure Ratio	20
2-3 CARBON MONOXIDE (CO)	21
2-3-1 Carbon Monoxide Formation	22
2-3-2 Sources of Carbon Monoxide Emissions	23
2-3-3 Effects of Carbon Monoxide	24
2-3-3-1 CO Health Effects	24
2-3-3-2 CO Environmental Effects	25
2-3-4 CO Natural Removal Methods	25
2-3-5 Reducing CO From IC Engines	26
2-4 H YDROCARBONS (C _x H _y)	27
2-4-1 Hydrocarbons Formation	27
2-4-2 Common Failures to Produce Hydrocarbon	27
2-4-3 Hydrocarbons Health Effects	29
2-5 SOOT	29
2-6 PARTICULATE MATTER	30

2-6-1 Health Effects Associated with Particulate Matter Pollution	31
2-6-2 Particulate Matter Environmental Effects	31
2-6-3 Particulate Matter Control Technologies	32

CHAPTER THREE ENGINE EMISSIONS REDUCTION TECHNIQUES

3-1 INTORDUCTION	35
3-2 EXHAUST GAS RECIRCULATIONS (EGR)	37
3-2-1 Classification of EGR systems	40
3-2-1-1Classification based on temperature	40
3-2-1-2Classification based on configuration	40
3-2-1-3 Classification based on pressure	41
3-2-2 Applications of EGR	41
3-2-2-1 EGR in Spark Ignited Engines	41
3-2-2-2 EGR in Diesel Engines	42
3-3-3 Effect of EGR on Diesel Engine Performance	43
3-3-3-1 Brake Power	43
3-3-3-2 Brake sfc	45
3-3-3-3 NO _X	47
3-3-3-4 Brake Thermal Efficiency	48
3-4 WATER INJECTION SYSTEM	50
3-4-1 History of Water Injection	51
3-4-2 Type of Water Injection	52
3-4-2-1 in - Cylinder Water Injection	53
3-4-2-2 Inlet Manifold Water Injection	62
3-4-2-2-1Charge Air Temperature and Pressure	63
3-4-2-2Droplet Size and Evaporation	64
3-4-3 Location of Water Injection	66
3-4-4 How Water Injection Works	67
3-5 DIESEL – WATER EMULSION	67
3-5-1 Effect of Diesel – Water Emulsion on Engine Brake Power	69
3-5-2 Effect of Diesel–Water Emulsion on Engine bsfc	70
3-5-3 Effect of Diesel–Water Emulsion on (NO _X) Emissions	72
3-6 ALCOHOL – WATER INJECTION	73
3-7 APPLICATIONS OF WATER INJECTION SYSTEM	74
3-8 EFFECT OF WI ON ENGINE PERFORMANCE	75
3-9 OTHER REDUCTION TECHNIQUES	76
3-9-1 Air/fuel Ratio Adjustment	76
3-9-2 Retarding Ignition Timing	77
3-9-3 Three-Way Catalyst (TWC)	77
3-9-4 Control Techniques for Lean-Burn Engines	78
3-9-4-1 Air/Fuel Ratio	78
3-9-4-2 Ignition Timing	78
3-9-5 Selective Catalytic Reduction (SCR)	79
3-9-6 NOx Absorption Materials Technology	79
3-9-6-1 Barium Aluminates	79

3-9-6-2 BaSnO ₃ Perovskite	79
3-9-6-3 Ba-Y Zeolite	80
3-9-6-4 Activated Carbon	80
3-9-7 Effect of Sulfur on NOx Storage Materials	80
3-9-8 Proposals for NOx Reduction	80
3-9-8-1 Proposal from Cummins for NOx reduction	81
3-9-8-2 Proposal from Caterpillar	81
3-9-8-3 Proposal from Waukesha Dresser	82
3-9-8-4 Oak Ridge National Laboratory (ORNL)	82
3-9-8-5 Argonne National Laboratory (ANL)	82

CHAPTER FOUR EXPERIMENTAL TEST RIG AND PROCEDURE

4-1 INTORDUCTION	84
4-2 DIESEL ENGINE AND FUEL PROPERTIES	84
4-3 REQUIRED DATA	84
4-4 EXPERIMENTS PHASES	84
4-5 EXPERIMENTAL SETUPS	85
4-5-1 The Dynamometer	85
4-5-2 Fuel gauging system setup	87
4-5-3 Portable Flue Gas Analyzer	87
4-5-4 Exhaust Gas Recirculation Valve	89
4-5-5 Water Injection System	93

CHAPTER FIVE

RESULTS AND DISCUSSIONS OF ENGINE PERFORMANCE

5-1 INTRODUCTION	98
5-2 THE DATA	98
5-3 BRAKE POWER	104
5-3-1 Exhaust Gas Recirculation System	104
5-3-2 Water Injection System	106
5-3-3 Combined (EGR and WI)	108
5-3-3-1 5% EGR and WI	108
5-3-3-2 10% EGR and WI	110
5-3-4 Effect of EGR Ratios at Constant WI on Brake Power	112
5-4 BRAKE SPECIFIC FUEL CONSUMPTION (Bsfc)	114
5-4-1 Exhaust Gas Recirculation System	114
5-4-2 Water Injection System	116
5-4-3 Combined (EGR and WI)	118
5-4-3-1 5% EGR and WI	118
5-4-3-2 10% EGR and WI	119
5-4-4 Effect of EGR Ratios at Constant WI on Bsfc	122
4-5 BRAKE THERMAL EFFICIENCY (BTE)	123

551 Exhaust Gas Recirculation	123
5-5-2 Water Injection System	124
5-5-3 Combined (EGR and WI)	126
5-5-3-1 5% EGR and WI	126
5-5-3-2 10% EGR and WI	128
5-4-4 Effect of EGR Ratios at Constant WI on BTE	130
5-5 Conclusion	130

CHAPTER SIX DISCUSSIONS OF EXHAUST GAS EMISSIONS

6-1 INTRODUCTION	133
6-2 NITROGEN OXIDES (NO _X)	133
6-2-1 Exhaust Gas Recirculation	134
6-2-2 Water Injection System	135
6-2-3 Combined (EGR and WI)	138
6-2-3-1 5% EGR and WI	138
6-2-3-2 10% EGR and WI	140
6-2-4 Effect of EGR Ratios at Constant WI on NO _X Emissions	142
6-3 CARBON MONXIDE (CO)	143
6-3-1 Exhaust Gas Recirculation	143
6-3-2 Water Injection System	144
6-3-3 Combined (EGR and WI)	146
6-3-3-1 5% EGR and WI	146
6-3-3-2 10% EGR and WI	147
6-4 Effect of EGR on Engine Performance and Emissions	149
6-5 Effect of WI Systems on Engine Performance and Emissions	151
6-6 Effect of Combined Systems on Engine Performance and Emissions	153
6-7 Data Correlation	156
6-7-1Classifications	156
6-8 Conclusion	165

CHAPTER SEVEN

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7-1 CONCLUSIONS	183
7-1-1 Exhaust Gas Recirculations (EGR)	183
7-1-2 Water Injection (WI)	183
7-1-2 Combined (EGR and WI)	184
7-2 RECOMMENDATIONS FOR FUTURE WORK	186

REFERENCES	171
APPENDICES	177
Appendix (A)	178
Appendix (B)	179
Appendix (D)	180
Appendix (E)	181
Appendix (F)	182
Appendix (G)	183

LIST OF FIGURES

Chapter 2

Figure 2.1 Primary sources of man – made NO _X	13
Figure 2.2 Effect of air / fuel ratio on thermal NO _X production	14
Figure 2.3 Thermal NO _X formation dependence on flame temperature	14
Figure 2.4 Equivalence ratio versus engine emission	18
Figure 2.5 the effect of engine speeds on NO _X emission	19
Figure 2.6 Effect of compression ratio on NO _X emission	19
Figure 2.7 the power gain by turbocharger	20
Figure 2.8 the effect of pressure ratio on NO _X emission	21

Chapter 3

Figure 3.1: Schematic of EGR system	38
Figure 3.2: Effect of EGR on Brake Power at $CR = 16$ and $PR = 6$	44
Figure 3.3: Effect of EGR on Brake Power at $CR = 20$ and $PR = 8$	45
Figure 3.4: Effect of EGR on Bsfc at CR=16	46
Figure 3.5 Effect of EGR on Bsfc at CR=20	46
Figure 3.6: Effect of EGR on NO _X at CR=16	47
Figure 3.7: Effect of EGR on NO _X at CR=20	48
Figure 3.8: Effect of EGR on BTE at CR=16	49
Figure 3.9 Effect of EGR on BTE at CR=20	49
Figure 3.10 Type of nozzle used for direct water injection	54
Figure 3.11 Effect of DWI timing on the ITE and NO _x emissions	57
Figure 3.12 (a): Effect of DWI quantity on NO _X emissions at the suction	58
Figure 3.12 (b): Effect of DWI quantity on NO _x emissions at compression	59
Figure 3.12 (c): Effect of DWI quantity on NO _X emissions at expansion stroke	59
Figure 3.13 (a): Effect of water injection quantity on ITE at the suction	60
Figure 3.13 (b): Effect of water injection quantity on ITE at the compression	60
Figure 3.13 (c): Effect of WI quantity on the ITE at the expansion stroke	61
Figure 3.14 Absolute Humidity of Moist Air at Saturation	64
Figure 3.15 Time for Droplet Evaporation in Dry Air at 1 atom and 40°C	65
Figure 3.16 Effect of Ambient Pressure on Evaporation Time	65
Figure 3.17 Effect of Temperature on Droplet Evaporation Time	66
Figure 3.18 Comparison between experimental and theoretical values of brake power	69
for pure diesel, 5, 10 and 15% water addition	
Figure 3.19 Comparison between experimental and theoretical values of brake power	70
for 20, 25 and 30% water addition	
Figure 3.20 Comparison between experimental and theoretical values of brake SFC	71
for pure diesel, 5, 10 and 15% water addition	
Figure 3.21 Comparison between experimental and theoretical values of brake SFC	71
for 20, 25 and 30% water addition	
Figure 3.22 The amount of normalized Nitrogen Monoxide emitted versus engine	72
speed using water diesel emulsions as fuel	
Figure 3.23 The amount of normalized Nitrogen Oxides versus engine speed using	72
water diesel emulsions as fuel	
Figure 3.24 Emissions before TWC	77
Figure 3.25 Emissions after TWC	78

Chapter 4

Figure 4.1 Engine (4D56) mounted on test bench of the dynamometer	86
Figure 4.2 Hydraulic dynamometer	86
Figure 4.3 Fuel measuring system	87
Figure 4.4 Portable flue gas analyzer	88
Figure 4.5 Engine connected to gas analyzer	89
Figure 4.6 EGR valve details	90
Figure 4.7 EGR valve modification	91
Figure 4.8 EGR piping	92
Figure 4.9 Intake elbow details	92
Figure 4.10 The arrangement of the intake system	93
Figure 4.11 Water injection pump	95
Figure 4.12 Water injection nozzles	96
Figure 4.13 Water injection system	96

Chapter 5

Figure 5.1 Effect of EGR ratios on engine brake power	105
Figure 5.2 Effect of WI systems on engine brake power	107
Figure 5.3 Effect of combined system (5% EGR+WI) on brake power	109
Figure 5.4 Effect of combined system (10% EGR+WI) on brake power	111
Figure 5.5 Effect of EGR ratios and WI (0.3mm at 5bar) WI on brake power	113
Figure 5.6 Effect of EGR system on Bsfc	115
Figure 5.7 Effect of WI system on Bsfc	116
Figure 5.8 Effect of combined system (5% EGR+WI) on Bsfc	119
Figure 5.9 Effect of combined system (10% EGR+WI) on Bsfc	120
Figure 5.10 Effect of EGR ratios and WI (0.3mm at 5bar) on Bsfc	122
Figure 5.11 Impact of EGR ratios on BTE	124
Figure 5.12 Impact of WI systems on BTE	125
Figure 5.13 Impact of combined system (5% EGR+WI) on BTE	127
Figure 5.14 Impact of combined system (10% EGR+WI) on BTE	128
Figure 5.15 Impact of BTE at EGR ratios and WI (0.3mm at 5bar)	130

Chapter 6

Figure 6.1 Influence of EGR ratios on NOx emission	135
Figure 6.2 Influence of WI system on NO _X emission	136
Figure 6.3 Influence of combined (5% EGR+WI) on NO _X emission	138
Figure 6.4 Influence of combined (10% EGR+WI) on NO _X emission	141
Figure 6.5 Influence of EGR and WI (0.3mm at 5bar) on NO _X emission	142
Figure 6.6 Impact of EGR systems on CO emission	144
Figure 6.7 Impact of WI systems on (CO) emission	145
Figure 6.8 Impact of combined (5 % EGR+WI) on CO emission	147
Figure 6.9 Impact of combined (10% EGR+WI) on (CO) emission	148
Figure 6.10 a comparison of engine performance and emissions between TC and 5%	
EGR setup	
Figure 6.11 a comparison of engine performance and emissions between TC and	150
10% EGR setup	
Figure 6.12 a comparison of engine performance and emissions between TC and WI	
(0.1mm at 5bar) setup.	

Figure 6.13 a comparison of engine performance and emissions between TC and WI 1	151	
(0.3mm at 10bar) setup.		
Figure 6.14 a comparison of engine performance and emissions between TC and WI		
(0.5mm at 5bar) setup		
	153	
+ (0.1mm at 5bar) setup		
Figure 6.16 a comparison of engine performance and emissions between TC and 5% 1	154	
+ (0.3mm at 5bar) setup		
Figure 6.17 a comparison of engine performance and emissions between TC and 1	155	
10% + (0.1 mm at 5bar) setup		
Figure 6.18 a comparison of engine performance and emissions between TC and 1	155	
10% + (0.3 mm at 5bar) setup.		
	157	
emissions		
Figure 6.20 calculated CO emissions limited by 1.2 and 0.8 of measured CO		
emissions	158	
Figure 6.21 calculated and measured NO _X and CO versus brake power at TC + 10% 1	161	
EGR ratio		
Figure 6.22 calculated and measured NO _X and CO versus brake power at TC + WI		
(0.3mm at 5bar)		
	162	
at TC + WI (0.3mm at 5bar)		
Figure 6.24 calculated and measured NO _X and CO versus brake thermal efficiency		
at TC + 10% EGR + WI (0.1mm at 5bar)		
Figure 6.25 calculated and measured NO_X and CO versus engine speed at $TC + 5\%$		
EGR ratio		
Figure 26 calculated and measured NO _X and CO versus engine speed at $TC + 5\%$		
EGR + WI (0.1 mm at 5 bar)		
Figure 6.27 calculated and measured NO _X and CO versus EGR ratios only		
	164	

LIST OF TABLES

Chapter 2

Table 2.1 The family of NO _X	10
Table 2.2: Effects of Carbon monoxide concentration in air	25

Chapter 3

Table 3.1: The Engine Specifications For Direct Water Inection	56
Table 3.2: Diesel Engine Specifications For Diesel – Water Emulsion	68

Chapter 5

Table 5.1: The Experimental Data	99
Table 5.2: Engine Performance and Exhaust Emissions	102
Table 5.3: The relationship between the brake power and bsfc at 2000rpm	117
Table 5.4 the ratios of bsfc and power between 5 and 10% EGR ratio at WI setup	121
0.1mm at 10bar	
Table 5.5 the ratios of bsfc and brake power between 5 and 10% of EGR ratios.	121
Table 5.6: comparison of EGR ratio and WI system on BTE at 2000rpm	126

Chapter 6

Table 6.1 Comparison of NO _X emissions between EGR ratios and WI systems at	137
2000rpm	
Table 6.2 Comparison of NO _X emission reduction between EGR and WI systems	138
Table 6-3 Comparisons of NO _X emission at different test setups	140
Table 6.4 Comparison between EGR system and combined system	141
Table 6.5 Measured and calculated NO _X and CO emissions	159

List of Abbreviations

AC	Alternating Current
ADI	Anti – Detonant Injection
AFD	Adjustable Frequency Drive
ATDC	After Top Dead Centre
A/F	Air Fuel Ratio
ARES	Advanced Reciprocating Engine System
BDC	Bottom Dead Centre
bsfc	Brake specific fuel consumption
BTE	Brake Thermal Efficiency
CASE	Center for Advanced Studies in Engineering
CI	Compression Ignition
СО	Carbon Monoxide
CR	Compression Ratio
DWI	Direct Water Injection
Dyno	Dynamometer
EGR	Exhaust Gas Recirculation
EPA	Environment Protection Agency
FIE	Forced Induction Engine
HCs	Hydrocarbons
ICE	Internal Combustion Engine
ITE	Indicated Thermal Efficiency
LRS	Long Route System
MAP	Manifold Absolute Pressure
MCU	Main Control Unit
MEMS	Micro – Electromechanical System
MTBE	Methyl Tertiary Butyl Ether
Ν	Engine Speed
NA	Natural Aspirated Engine
NAAQS	National Atmospheric Air Quality Standard
NO _X	Nitrogen Oxides
NSCR	Nonselective Catalytic Reduction
PM	Particular Matter
ppm	part per million
PR	Pressure Ratio
PTFE	Poly tetra fluoroe thylene
RCU	Remote Control Unit
RON	Research Octane Number
rpm	revolution per minute
SCR	Selective Catalytic Reduction
TWC	Three-Way Catalyst
SI	Spark Ignition
SO ₂	Sulfur Dioxide
SRS	Short Route System
TC	Turbo Charged Engine
TDC	Top Dead centre
VGT	Variable Geometry Turbocharger
VOCs	Volatile Organic Compounds
WI	Water Injection