Effect of Nitrogen and Phosphorus Fertilizers on Yield and Yield Components of Three Cultivars of Maize (Zea mays)

By

Izzeldein Adam Mohammed Radma

B.Sc., University of Kordofan, Faculty of Natural Resources and Environmental Studies (2000)

A Thesis Submitted in Fulfillment of the Requirements for the Degree of M.Sc (AGRONOMY)

Supervisor

Prof. Faisal Mirghani Ali

Sudan University of Science and Technology College of Agricultural Studies Department of Crop Sciences

2004
DEDICATION

To my parents,
to my wife ‘Samia’ and my sons,
and to my friends with respect
ACKNOWLEDGEMENTS

Above all I render my thanks to the merciful ALLAH who offer me all things to accomplish this study.

I wish to express my sincere gratitude and appreciation to my supervisor professor Faisal Mirghani Ali for his invaluable guidance and help during the stages of the practical work and preparation of this study.

Thanks are due to Dr. Ahmed Ali Osman, Head of the Crop Science Department of the College of Agricultural Studies, Sudan University of Science and Technology.

Thanks are extended to the Gezira Research Station, Sennar Research Station for helping and providing the seeds of the cultivars.

Thanks also for People’s Arms Defense Camp at El-Getaina, where the experiments were conducted.

My thanks are also due to my wife and all my family. Finally, my sincere thanks are to my friends and staff of Crop Science Department of the College for their help in providing laboratory facilities to conduct this study.

Lastly, my thanks to Salah M. Osman for typing the manuscript.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>iiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>Abstract</td>
<td>xii</td>
</tr>
<tr>
<td>Abstract in Arabic</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1

CHAPTER TWO: LITERATURE REVIEW

2.1 Classification

2.1.1 Dent corn
2.1.2 Flint corn
2.1.3 Flour or soft corn
2.1.4 Sweet corn
2.1.5 Popcorn
2.1.6 Wax corn

5

2.2 Crop ecology

2.2.1 Moisture
2.2.2 Temperature and soils

6

2.3 Effect of fertilizer on the growth and yield of maize

8

CHAPTER THREE: MATERIALS AND METHODS

3.1 The experimental site and soil properties

13

3.2 Soil analysis

13

3.3 Climate

14

3.4 Source of seeds

14

3.5 Experimental design and treatment

14

3.6 Fertilizer, sowing and sowing date

15

3.7 Watering, thinning and weeding

15

3.8 Measurements of growth attributes

15

3.8.1 Plant height

16

3.8.2 Leaf number per plant

16
3.8.3 Leaf area 16
3.8.4 Number of cobs per plant 16
3.8.5 Dry weight 16

3.9 Harvest 16

3.9.1 Length of cob/cm 17
3.9.2 Number of rows/cob 17
3.9.3 Number and weight of seeds/cob 17
3.9.4 100-seeds weight 17
3.9.5 Final yield (kg/ha) 17

CHAPTER FOUR: RESULTS

4.1 Vegetative growth of the first season 18
4.2 Plant height 18

4.2.1 Plant height at 30 days 18
4.2.2 Plant height at 45 days 18
4.2.3 Plant height at 60 days 19
4.2.4 Plant height at 75 days 21
4.2.5 Changes in plant height with time 21

4.3 Number of leaves per plant 21

4.3.1 Number of leaves/plant at 30 days 21
4.3.2 Number of leaf/plant at 45 days 25
4.3.3 Number of leaf/plant at 60 days 25
4.3.4 Changes in number of leaves/plant 27

4.4 Leaf area (cm²) 27

4.4.1 Leaf area at 30 days from sowing 27

4.4.2 Leaf area at 45 days from sowing 27
4.4.3 Leaf area at 60 days from sowing 31
4.4.4 Changes in leaf area 31

4.5 Yield and yield components 31

4.5.1 Dry weight of plant 31
4.5.2 Number of rows/cob 35
4.5.3 Weight of 100 seeds (g) 35
4.5.4 Length of cob (cm) 37
4.5.5 Weight of cob (kg/ha) 37
4.5.6 Weight of seeds (kg/ha) 39
4.5.7 Number of seeds /cob 39
4.6 Vegetative growth of the second season 41

4.7 Plant height 41

4.7.1 Plant height at 30 days 41
4.7.2 Plant height at 45 days 41
4.7.3 Plant height at 60 days 43
4.7.4 Plant height at 75 days 45
4.7.5 Changes in plant height with time 45

4.8 Number of leaves per plant 48

4.8.1 Number of leaves/plant at 30 days 48
4.8.2 Number of leaves/plant at 45 days 48
4.8.3 Number of leaves/plant at 60 days 50
4.8.4 Changes in number of leaves/plant 50

4.9 Leaf area (cm2) 54

4.9.1 Leaf area at 30 days from sowing 54
4.9.2 Leaf area at 45 days from sowing 54
4.9.3 Leaf area at 60 days from sowing 55
4.9.4 Changes in leaf area 55

4.10 Yield and yield components 55

4.10.1 Dry weight of plant 55
4.10.2 Number of rows/cob 59
4.10.3 Weight of 100 seeds (g) 61
4.10.4 Length of cob (cm) 61
4.10.5 Weight of cob (kg/ha) 61
4.10.6 Weight of seeds per cob (g) 63
4.10.7 Number of seeds/cob 65
4.10.8 Weight of seeds (kg/ha) 65

CHAPTER FIVE: DISCUSSION

5.1 Vegetative growth 68
5.2 Yield and yield components 69

5.2.1 Weight of cobs (kg/ha) 69
5.2.2 Weight of seeds (kg/ha) 69
5.2.3 Number of seeds per cob 71
5.2.4 100 seeds weight (g) 72

5.3 Conclusions 72
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Area, yield and production of maize in Sudan</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Effect of nitrogen and phosphorus on seed yield of maize</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Effect of NPK on yield of seeds over four seasons</td>
<td>12</td>
</tr>
<tr>
<td>4.1 Effect of nitrogen and phosphorus on plant height of three cultivars of maize (30 days from sowing)</td>
<td>20</td>
</tr>
<tr>
<td>4.2 Effect of nitrogen and phosphorus on plant height of three cultivars of maize (45 days from sowing)</td>
<td>20</td>
</tr>
<tr>
<td>4.3 Effect of nitrogen and phosphorus on plant height of three cultivars of maize (60 days from sowing)</td>
<td>22</td>
</tr>
<tr>
<td>4.4 Effect of nitrogen and phosphorus on plant height of three cultivars of maize (75 days from sowing)</td>
<td>22</td>
</tr>
<tr>
<td>4.5 Effect of nitrogen and phosphorus on leaf number of three cultivars of maize (30 days from sowing)</td>
<td>26</td>
</tr>
<tr>
<td>4.6 Effect of nitrogen and phosphorus on leaf number of three cultivars of maize (45 days from sowing)</td>
<td>26</td>
</tr>
<tr>
<td>4.7 Effect of nitrogen and phosphorus on leaf number of three cultivars of maize (60 days from sowing)</td>
<td>30</td>
</tr>
<tr>
<td>4.8 Effect of nitrogen and phosphorus on leaf area of three cultivars of maize (30 days from sowing)</td>
<td>30</td>
</tr>
<tr>
<td>4.9 Effect of nitrogen and phosphorus on leaf area of three cultivars of maize (45 days from sowing)</td>
<td>32</td>
</tr>
<tr>
<td>Table</td>
<td>Page No</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of nitrogen and phosphorus on leaf area of three cultivars of maize (60 days from sowing)</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of nitrogen and phosphorus on dry weight per plant of three cultivars of maize</td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of nitrogen and phosphorus on number of rows per cob of three cultivars of maize</td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of nitrogen and phosphorus on 100 seeds weight of three cultivars of maize</td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of nitrogen and phosphorus on length of cob of three cultivars of maize</td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of nitrogen and phosphorus on weight of cob of three cultivars of maize</td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of nitrogen and phosphorus on weight of seeds of three cultivars of maize</td>
</tr>
<tr>
<td>4.17</td>
<td>Effect of nitrogen and phosphorus on number of seeds per cob of three cultivars of maize</td>
</tr>
<tr>
<td>4.18</td>
<td>Effect of nitrogen and phosphorus on plant height of three cultivars of maize (30 days from sowing)</td>
</tr>
<tr>
<td>4.19</td>
<td>Effect of nitrogen and phosphorus on plant height of three cultivars of maize (45 days from sowing)</td>
</tr>
<tr>
<td>4.20</td>
<td>Effect of nitrogen and phosphorus on plant height of three cultivars of maize (60 days from sowing)</td>
</tr>
<tr>
<td>4.21</td>
<td>Effect of nitrogen and phosphorus on plant height of three cultivars of maize (75 days from sowing)</td>
</tr>
<tr>
<td>4.22</td>
<td>Effect of nitrogen and phosphorus on leaf number of three cultivars of maize (30 days from sowing)</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th></th>
<th>Effect of nitrogen and phosphorus on</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.23</td>
<td>leaf number of three cultivars of maize (45 days from sowing)</td>
<td>51</td>
</tr>
<tr>
<td>4.24</td>
<td>leaf number of three cultivars of maize (60 days from sowing)</td>
<td>51</td>
</tr>
<tr>
<td>4.25</td>
<td>leaf area of three cultivars of maize (30 days from sowing)</td>
<td>56</td>
</tr>
<tr>
<td>4.26</td>
<td>leaf area of three cultivars of maize (45 days from sowing)</td>
<td>56</td>
</tr>
<tr>
<td>4.27</td>
<td>leaf area of three cultivars of maize (60 days from sowing)</td>
<td>60</td>
</tr>
<tr>
<td>4.28</td>
<td>dry weight per plant of three cultivars of maize</td>
<td>60</td>
</tr>
<tr>
<td>4.29</td>
<td>number of rows per cob of three cultivars of maize</td>
<td>62</td>
</tr>
<tr>
<td>4.30</td>
<td>100 seeds weight of three cultivars of maize</td>
<td>62</td>
</tr>
<tr>
<td>4.31</td>
<td>length of cob of three cultivars of maize</td>
<td>64</td>
</tr>
<tr>
<td>4.32</td>
<td>weight of cob of three cultivars of maize</td>
<td>64</td>
</tr>
<tr>
<td>4.33</td>
<td>weight of seeds per cob of three cultivars of maize</td>
<td>66</td>
</tr>
<tr>
<td>4.34</td>
<td>number of seeds per cob of three cultivars of maize</td>
<td>66</td>
</tr>
<tr>
<td>4.35</td>
<td>seed yield of three cultivars of maize</td>
<td>67</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Changes in plant height as affected by nitrogen</td>
</tr>
<tr>
<td>2.</td>
<td>Changes in plant height as affected by</td>
</tr>
</tbody>
</table>
3. Changes in number of leaves as affected by nitrogen

4. Changes in number of leaves as affected by various cultivars

5. Changes in leaf area as affected by nitrogen

6. Changes in leaf area as affected by various cultivars

7. Changes in plant height as affected by nitrogen

8. Changes in plant height of various cultivars

9. Changes in number of leaves as affected by nitrogen

10. Changes in number of leaves as affected by cultivars

11. Changes in leaf area as affected by nitrogen

12. Changes in leaf area as affected by various cultivars
ABSTRACT

Field experiments were conducted in the Demonstration Farm of People’s Arms Defense Camp at El-Getaina (White Nile) for the two consecutive seasons (summer and winter) 2001/02 to study the effect of nitrogen and phosphorus fertilizers on yield and yield components of three cultivars of maize (Zea mays L.) under irrigation.

The treatments used consisted of three levels of nitrogen control (N_0), 43 kg N/ha, (N_1), 86 kg N/ha (N_2), two levels of phosphorus control (P_0), 43 kg P_2O_5/ha, (P_1) and three cultivars, Giza-2 (V_1), Mugtama-45 (V_2) and Pannar-6480 (V_3).

The 18 factorial treatments were executed in randomized complete block design, with 5 replications.

The results obtained showed that the nitrogen fertilizer had a significant effect on growth of maize cultivars, particularly plant height and leaves number, leaf area and dry weight of plant. Nitrogen fertilizer also significantly affected final seed yield and some yield components, cob yield and number of seeds per cob. When phosphorus fertilizer has no significant effect on seed yield.

The studies obtained showed negligible differences between the two seasons (summer and winter) in seed yield.

This suggest that the maize crop can be grown successfully in both seasons, but since there is few winter crops, it would be possible to treat maize as a winter crop in the area to intensively and diversify the rotations.
بسم الله الرحمن الرحيم

ملخص الأطروحة

أجريت تجربة حقلية بمعسكر الدفاع الشعبي بالقطينة (النيل الأبيض) موسمين 2002/2001 في العروتين الصيفية والشتوية على التوالي لدراسة تأثير السماد الأروتي والفوسفاتي على نمو وإنتاجية ثلاثة أصناف من الذرة الشامية جيزا-2، مجتمع-45 وبانار-6480 تحت ظروف الرى الإصطناعي.

وقد كانت المعالد المستعملة للأروتي صفر، 43 كجم أروتي/هكتار و 86 كجم أروتي/هكتار، والمعالد المستعملة الفوسفات كانت صفر، 43 كجم فسفور/هكتار، حيث كان مصدر الأروتي سماد اليوريا (46% أروتي) والفوسفور سماد الفوسفات (48% فسفور) على التوالي.

تضمنت التجربة 18 معاملة للعينات والأسمدة المختلفة، وكان التصميم الإحصائي المستعمل لهذه التجربة هو التصميم العشوائي ذو القطاعات الكاملة والتكرار الخماسي.
أوضحت النتائج أن للسماد الأروتي كان له تأثيراً معنويًّا على زيادة إنتاجية الجحب وعدد الحبوب في الكوز (القناديل) ووزن الكيزان ولم يمكن هثالك تأثير معنوي للفسفور على الإنتاجية ومكونات الإنتاج.

أوضح أن الزيادة في الإنتاجية كانت بسبب الزيادة في وزن الكيزان (القناديل) وعدد الحبوب في الكوز الواحد.

أوضحت النتائج أن الإنتاجية ومكوناتها كانت متماثلة تقريباً في المواسمين الأمر الذي يوضح أنه يمكن زراعة المحصول في أي من المواسمين الشتوي والصيفي. وحيث أن هثالك نقص في المحاصيل الشتوية بالدورات الزراعية فيمكن الإعتماد بزراعة محصول الذرة الشامية في العروة الشتوية الأمر الذي يمكن من تكثيف وتنويع الدورات الزراعية في منطقة الدراسة.