TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>ii</td>
</tr>
<tr>
<td>Table of contents</td>
<td>iii</td>
</tr>
<tr>
<td>List of tables</td>
<td>iv</td>
</tr>
<tr>
<td>List of figures</td>
<td>v</td>
</tr>
<tr>
<td>Abstract (English)</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract (Arabic)</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER ONE

1. Introduction
 1.1. π- Deficient nitrogen- heterocyclic compounds 1
 Pyrimidine derivatives .1.2 1
 1.2.1. Barbiturate derivatives 2
 Correlation of structure and properties of pyrimidine.1.3 5
 derivate
 Solubility of pyrimidine and barbiturate .1.3.1 5
 Solubility of pyrimidine .1.3.1.1 5
 1.3.1.2. Solubility of barbiturates 7
 Basic strength of pyrimidine and barbiturate derivatives -1.3.2 8
 1.3.2.1- Basic strength of pyrimidine derivatives 8
 The keto-enol tautomerism in pyrimidine derivatives -1.3.3 11
 1.3.3.2- The keto-enol tautomerism of barbiturate derivatives 14
 Dipole moments of pyrimidine and barbiturate -1.3.4 15
 1.3.4.1- Dipole moments of pyrimidine 15
 1.3.4.2- Dipole moments of barbiturate derivatives 16
 Synthesis of pyrimidine and barbiturate derivatives - .1.4 16
 1.4.1 - Synthesis of pyrimidine 16
 1.4.2- Synthesis of barbiturate derivatives 18
 Reaction of pyrimidines and Barbituates -1.5 20
 Reaction with electrophilic reagents -1.5.1 20
 1.5.1.1- Addition to nitrogen 20
 protonation -1.5.1.1.1 20
 :Deprotonation -1.5.1.1.2 21
 1.5.1.1.3- Alkylaion 21
1.5.1.2- Substitution at Carbon 22
1.5.2- Reactions with oxidizing agents 26
1.5.3- Reactions with reducing agents 27
1.5.4- Reaction with nucleophilic reagents 27
1.5.5- Substitution with displacement of halogen 28
1.5.7- Photochemical reactions 29
1.6. Spectral properties of pyrimidine and barbiturates 29
derivatives
1.6.1. Infrared spectra of barbiturates derivatives 30
Ultra-violet spectra of pyrimidine and barbiturates-1.6.2 30
derivatives
1.6.3-Nuclear magnetic resonance of pyrimidine and barbiturates
1.6.3.1-Nuclear magnetic resonance of pyrimidine 31
1.6.3.2-Nuclear magnetic resonance of barbiturates 32
1.6.4- X- diffraction spectroscopy of barbiturates 32
1.7- The Detection and assay of barbiturates 32
1.7.1- Choice of Internal Standard and extraction technique 33
Screen method -1.7.2 34
1.7.2.1- Immunoassay Methods 34
1.7.2.2- Thin layer chromatography 34
Confirmatory methods -1.7.3 34
1.7.3.1- Spectrophotometry 34
1.7.3.2- Gas chromatography 34
1.7.4- Gas chromatography – mass spectrometry 35
1.7.5- High performance liquid chromatography 35
1.7.6- Titration method 36
Biological activity of barbiturate derivatives - 1.8 36
1.8.1- Barbiturate Development 36
1. 8.2- Structure- activity relationships 36
Toxicological characteristic of barbituric and .1.8.3 37
thiobarbituric acid
1.9. Aim of the project 37

CHAPTER TWO

Experimental and Results .2 39
Materials .2.1 39
Chemicals .2.1.1 39
2.1.2 Solvents 39
2.1.3. Reagents
(Thin Layer Chromatography (TLC 2.2
(Infrared spectrophotometer (IR 2.3
2.4 Ultraviolet-visible spectrophotometer
2.5 General equipments
2.6 Methods
(Preparation of diethyl alkyl malonate derivatives (Ia, Ib .2.6.1
2.6.2. Preparation of diethyl phenyl malonate (II)
)(Preparation of ethane tetra carboxylic ethyl ester (III .2.6.3
Preparation of diethyl acetyl and benzoyl malonate (IVa, .2.6.4
(IVb
)(Preparation of pyrimidine-2,4,6-trione (Va-Vf .2.6.5
2.6.6. Preparation of pyrimidine-2-thio-4,6-dione (VIa – VIh)
2.6.7.1. Investigation and characterization of the substituted
diethyl malonate (Ia - IVb)
2.6.7.2 Investigation and characterization of pyrimidine-2,4,6-
trione and pyrimidine-2-thio-4,6-dione
Ultraviolet-visible data measurements .2.7
Ultraviolet-visible scanning of the final prepared .2.7.1
(compounds, (solvent effect
2.7.2. Effect of pH on the ultraviolet-visible spectra of the
prepared compounds
2.8. Infrared spectral measurements
Infrared measurement method for studying keto-enol.2.8.1
phenomena
3. Discussion
4.Conclusion and recommendation
5.REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 2.1: Chemical structures of the prepared diethyl substituted malonate</td>
<td>49</td>
</tr>
<tr>
<td>Scheme 2.2: Chemical structures of the prepared 5-substitutred pyrimidine -2,4,6- trione</td>
<td>50</td>
</tr>
<tr>
<td>Scheme 2.3: Chemical structures of the prepared 5-substitutred pyrimidine -2- thio-4,6- dione</td>
<td>51</td>
</tr>
<tr>
<td>Fig.2.4.IR spectra of diethyl malonate</td>
<td>65</td>
</tr>
<tr>
<td>(Fig.2.5.IR spectra of diethyl ethyl malonate (Ia</td>
<td>65</td>
</tr>
<tr>
<td>(Fig.2.6.IR spectra of diethyl benzyl malonate (Ib</td>
<td>65</td>
</tr>
<tr>
<td>(Fig.2.7.a.IR spectra of diethyl phenyl malonate (II</td>
<td>66</td>
</tr>
<tr>
<td>Fig.2.7.b.IR spectra of diethyl phenyl malonate (II) (in CCl₄)</td>
<td>66</td>
</tr>
<tr>
<td>(Fig.2.8.IR spectra of ethane tetra ethyl carboxylic acid (III</td>
<td>66</td>
</tr>
<tr>
<td>(Fig.2.9.IR spectra of diethyl benzoyl malonate (IV</td>
<td>67</td>
</tr>
<tr>
<td>Fig.2.10.IR spectra of 5- ethyl -5- phenyl pyrimidine-2,4,6- (trione (Standard sample</td>
<td>67</td>
</tr>
<tr>
<td>(Fig.2.11.IR spectra of pyrimidine-2,4,6- trione (Vf</td>
<td>67</td>
</tr>
<tr>
<td>Fig.2.11.a.IR spectra of pyrimidine-2,4,6- trione (Vf) (100µg/100mg</td>
<td>68</td>
</tr>
<tr>
<td>Fig.2.11.b.IR spectra of pyrimidine-2,4,6- trione (Vf) (10µg/100mg</td>
<td>68</td>
</tr>
<tr>
<td>Fig.2.11.C.IR spectra of pyrimidine-2,4,6- trione (Vf) (1µg/100mg</td>
<td>68</td>
</tr>
</tbody>
</table>
(Fig.2.12. IR spectra of 5-ethyl pyrimidine-2,4,6-trione (Va
Prepared mechanically) 69

(Fig.2.12. IR spectra of 5-ethyl pyrimidine-2,4,6-trione (Va
Prepared manually) 69
(Fig.2.13. IR spectra of 5-phenyl pyrimidine-2,4,6-trione (Vc
Prepared mechanically) 69

(Fig.2.13.a. IR spectra of 5-phenyl pyrimidine-2,4,6-trione (Vc
Prepared manually) 70
(Fig.2.14. IR spectra of 5-benzyl pyrimidine-2,4,6-trione (Vb
70

(Fig.2.15. IR spectra of pyrimidine-2-thio-4,6-dione (Vlh
70

(Fig.2.16. IR spectra of di-(pyrimidine-2-thio-4,6-dione) (VIe
71

Fig.2.17. IR spectra of 5-benzoyl pyrimidine-2-thio-4,6-dione
(Vlg

Fig.2.18. IR spectra of 5-diethyl malonylpyrimidine-2-thio-
4,6-dione (VId
71

(Fig.2.19. UV spectra of diethyl phenyl malonate (II
75

(Fig.2.20. UV spectra of diethyl benzyl malonate (Ib
75

(Fig.2.21. UV spectra of 5-benzyl pyrimidine-2,4,6-trione (Vb
75

Fig.2.22. UV spectra of 5-benzyl pyrimidine-2,4,6-trione (Vb
((in ethanol
76

(Fig.2.23. UV spectra of 5-benzyl pyrimidine-2,4,6-trione (Vb
"in ethanol/ H
76

(Fig.2.24. UV spectra of 5-benzyl pyrimidine-2,4,6-trione (Vb
(in ethanol/ pH 10
77
Fig.2.25. UV spectra of 5-phenyl pyrimidine-2,4,6-trione (Vc
((in ethanol
77

(Fig.2.26. UV spectra of 5-phenylpyrimidine-2,4,6-trione (Vc
(in ethanol/ pH 10
78

(Fig.2.27. UV spectra of 5-phenylpyrimidine-2,4,6-trione (Vc
78
(in ethanol/ pH 13)

Fig.2.28.UV spectra of 5-ethyl-5-phenylpyrimidine-2,4,6-trione (standard sample) (in ether) 79

Fig.2.29.UV spectra of 5-ethyl-5-phenylpyrimidine-2,4,6-trione (standard sample) (in ethanol) 79

Fig.2.30.UV spectra of 5-ethyl-5-phenylpyrimidine-2,4,6-trione (standard sample) (in ethanol/ pH 10) 80

Fig.2.31.UV spectra of 5-ethyl-5-phenylpyrimidine-2,4,6-trione (standard sample) (in ethanol/ pH 13) 80

(Fig.2.32.UV spectra of pyrimidine-2-thio-4,6-dione (VIh (in ether) 81

(Fig.2.33.UV spectra of pyrimidine-2-thio-4,6-dione (VIh (in ethanol) 81

(Fig.2.34.UV spectra of pyrimidine-2-thio-4,6-dione (VIh (in ethanol/ H) 82

(Fig.2.35.UV spectra of pyrimidine-2-thio-4,6-dione (VIh (in ethanol/ pH 10) 82

(Fig.2.36.UV spectra of pyrimidine-2-thio-4,6-dione (VIh (in ethanol/ pH 13) 83

Fig.2.37.UV spectra of 5-phenyl pyrimidine-2-thio-4,6-dione (VIc) (in ethanol) 83

Fig.2.38.UV spectra of 5-phenyl pyrimidine-2-thio-4,6-dione (VIc) (in ethanol/ pH 10) 84

Fig.2.39.UV spectra of 5-phenyl pyrimidine-2-thio-4,6-dione (VIc) (in ethanol/ pH 13) 84

Fig.2.40.UV spectra of 5-benzyl pyrimidine-2-thio-4,6-dione (VIb) (in ether) 85

Fig.2.41.UV spectra of 5-benzyl pyrimidine-2-thio-4,6-dione (VIb) (in ethanol) 85
Fig. 2.42. UV spectra of 5-benzyl pyrimidine-2-thio-4,6-dione (VIb) (in ethanol/H)

Fig. 2.43. UV spectra of 5-benzyl pyrimidine-2-thio-4,6-dione ((VIb) (in ethanol/pH 10

Fig. 2.44. UV spectra of 5-benzyl pyrimidine-2-thio-4,6-dione ((VIb) (in ethanol/pH 13

Fig. 2.45. UV spectra of 5-ethyl pyrimidine-2-thio-4,6-dione ((VIa) (in ethanol

Fig. 2.46. UV spectra of 5-benzoyl pyrimidine-2-thio-4,6-dione ((VIg) (in ethanol

Fig. 2.47. UV spectra of 5-diethyl malonyl-2-thio-dione (VI)d ((in ethanol

Fig. 2.48. UV spectra of di-(pyrimidine-2-thio-4,6-dione) (VIe) ((in ethanol

LIST OF TABLES
Table (1.1): Representative of disubstituted barbituric acid
Table (1.2): Solubility of some solid pyrimidine derivatives
Table (1.3): Amount of barbituric acid in undissociated form at pH 7
Table 2.1.a: Chemical name of the substituted diethyl malonate derivatives
Table 2.1.b: Chemical names of the 5-substituted pyrimidine-2,4,6-trione
Table 2.1.c: Chemical names of the 5-substituted pyrimidine-2-thio-4,6-dione
Table 2.2.a: Yield percentage, recrystallization solvent, melting or boiling point, molecular formula and molecular weight of substituted diethyl malonate
Table 2.2.b: Yield percentage, recrystallization solvent, melting or boiling point, molecular formula and molecular weight of the pyrimidine-2,4,6-trione
Table 2.2.c: Yield percentage, recrystallization solvent, melting or boiling point, molecular formula and molecular weight of the 5-substituted pyrimidine-2-thio-4,6-dione
Table 2.3.a: Thin layer chromatography of substituted diethyl malonate derivatives
Table 2.3.b: Thin layer chromatography of the 5-substituted pyrimidine-2,4,6-trione
Table 2.3.c: Thin layer chromatography of the 5-substituted pyrimidine-2-thio-4,6-dione
Table 2.4.a: Infrared spectral data of intermediate substituted diethyl malonate derivatives
Table 2.4.b: Infrared spectral data of 5-substituted pyrimidine-2,4,6-trione derivatives
Table 2.4.c: Infrared spectral data of 5-ethyl -5-phenyl (pyrimidine-2,4,6-trione (phenobarbitone, standard sample
Table 2.4.d: Infrared spectral data of the 5-substituted pyrimidine-2-thio-4,6-dione
Table 2.4.e.i: infrared spectral study of keto-enol tautomersim in (diethyl phenyl malonate (as a liquid film using CCl₄ as solvent
Table 2.4.e.ii: infrared spectral study of keto-enol tautomersim in (barbituric acid (using KBr disk
Table 2.4.f.i: infrared spectral of diethyl malonate
Table 2.4.f.ii: infrared spectral of urea and thio-urea
Table 2.5.a. ultraviolet spectral data of mono substituted diethyl malonate
Table 2.5.b. ultraviolet spectral data of the 5-substituted pyrimidine-2,4,6-trione derivatives
Table 2.5.c. ultraviolet spectral data of the 5-substituted pyrimidine-2-thio-4,6-dione
Table (3.1): The carbonyl stretching vibration of the coupled diethyl malonate derivatives with urea and Thiourea
Table (3.2): Effect of the method of preparation of alkali halides disk in compounds (Va) and (Vc) for the region 1800-1600Cm⁻¹