بسم الله الرحمن الرحيم

(أَوْلَمْ يَرَ الَّذِينَ كَفَرُوا أَنَّ السَّمَاءَاتِ وَالأَرْضَ
كَانَا رَقِيقًا فَعَلَّفُنا هُمَا
وَجَعَلْنَا مِنَ الْمَاءِ ْكُلَّ شَيْءٍ حَيٍّ إِلَّاٰ يُؤْمِنُونَ)

صدق الله العظيم

Dedication
To the soul of my uncle Kaml Osman

Elzuber

My Parents

My brothers

My colleagues and friends
I gratefully acknowledge my indebtedness to my supervisor Dr Mohamed Elmukhtar Abd Elaziz who has been a source of knowledge, advice and support. His friendly attitude has surrounded him with pleasant and qualified people who helped to create an excellent working atmosphere.

I would like to thank deeply Dr Omer Adam Gibla for his effort and support.

My appreciation would go to Dr Aziza Karrer.

I would like to express my sincere gratitude to my teachers Bakeir Yaguob, Abd Ehameed Faroge and Safa Abd Elbagi.

Thanks are also due to my teachers and colleges in Sudan University of Science and Technology for their support.
Abstract

The objective of this study was to detect the pollutant anions in Kamleen drinking water from underground sources. Concentration levels of chloride, sulphate, nitrate, nitrite, and particularly fluoride were determined. In addition, color, turbidity, hydrogen ion concentration, electrical conductivity, total hardness, total alkalinity, and total dissolved solids were measured. Samples of groundwater were randomly collected from twenty eight different areas around central Kamleen locality during the summer season from May to August 2011.

Ion-selective electrodes methods were used to determine fluoride, chloride and nitrate. Colorimetric methods were used to determine sulphate, turbidity and also fluoride and nitrate. In comparison, sulphate content was also determined gravimetrically. Nitrite was also determined colorimetrically but using standard addition method. Chloride was also determined by titrimetric method and also total hardness and total alkalinity.

The results obtained showed that the of fluoride contents ranged from 0.01 to 1.89 ppm, chloride, 3.82 to 770.42 ppm, nitrate 8.52 to 44.00 ppm, nitrite 0.008 to 0.828ppm and sulphate ranged from 5.99 to 881.00 ppm. It was also found that hydrogen
ion concentration and turbidity were in agreement with those of the international standard except those of total dissolved solids (2070 ppm), and electrical conductivity (3105µs) in Eliedaid groundwater.

Chemical composition studies showed that the total hardness, total alkalinity nitrate and nitrite in all sites of Kamleen groundwater complied with those of the international standards of drinking water. Only one sample of Eliedaid, however, showed higher values for chloride (777.24 ppm) and sulphate (881.00 ppm) than the maximum permissible limits (250 ppm) for both ions. Up to five samples of Kamleen groundwater of Fadoul (1.69ppm), Eltakala Abashar (1.63ppm), Eltorabi Elgadida (1.89ppm), Elkasabmar (1.51ppm), Eltakala Rofaa (1.55 ppm), did not conform with the maximum permissible limit of 1.50 ppm for fluoride content in drinking water. The groundwater of these areas could be considered as unsuitable for drinking.

The groundwater of the central and far eastern areas of Kamleen locality were affected by fluoride, while those of northern and western, as indicated by the results obtained, were affected by salinity.
الخلاصة

هدفت هذه الدراسة للكشف عن الأنيونات الملونة لمياه الشرب الجوفية بمحلية الكاملين. وقد تم تعيين تركيز محتوى الكلوريد والكبريتات والنترات والفلوريد وخاصة الفلوريد. بالإضافة إلى قياس اللون والعكارة وتركيز أيون الهيدروجين والمواد الصلبة الذائبة و العسر الكلي والقلوية الكلية والموصليات الكهربائية.

وقد تم جمع العينات من المصادر الجوفية بطريقة عشوائية من ثماني عشرين منطقة مختلفه من اتجاه ووسط المحلية خلال فصل الصيف في الفترة من مايو إلى أغسطس للعام 2011 م.

وقد تم استخدام طرق الإقطاب انتقائية الأيون لتحضير محتوى الفلوريد والكلوريد بالإضافة إلى النترات. وقد تم استخدام طرق المطيافية اللونية لتعيين
محتوى الكبريتات والعكارة والنترات أيضاً. وللمقارنة تم تعيين محتوى الكبريتات بالطريقة الوزنية. وقد تم أيضاً استخدام المطيافية اللونية لتعيين محتوى النترات لكن باستخدام طريقة الإضافة القياسية. وتم أيضاً تعين الكلوريد بالإضافة إلى العصر الكلي والقلوية الكلية بالتحليل الحمسي.

وقد اظهرت النتائج ان محتوى الفلوريد يقع في المدى من (0.01 الى 1.89 جزء من المليون) والكلوريد في المدى من (3.82 الى 777.24 جزء من المليون) والنترات من (8.52 الى 44.00 جزء من المليون). ولقد وجد أيضاً ان تركيز ايون الهاييروجين والعكارة وكمية الاملاح الداكنة والعصر والقلوية والموصلية الكهربائية مطابقة للمواصفات العالمية ما عدا كمية الاملاح الداكنة لقرية لعديد 2070 جزء من المليون الموصلية الكهربية لنفس القرية 3105 مايكرو سمنس. وقد اوضحت الدراسة أيضاً ان محتوى النترات والنترات مطابق للمواصفات العالمية لمياه الشرب. وقد اظهرت عينة واحدة فقط من قرية العديد قيم عالية بالنسبة للكلوريد (777.24 جزء من المليون) والكبريتات (881.00 جزء من المليون) والتي تجاوزت الحد المسموح به عالمياً (250 جزء من المليون).

وقد وجد ايضاً ان هناك خمس عينات في المحلية وهي فضلاً (1.66 جزء من المليون) النكتة أبنتُر (1.63 جزء من المليون) الترابي القديمة (1.89 جزء من المليون) الكسمبر (1.51 جزء من المليون) بالإضافة إلى النكتة رفاعة (1.55 جزء من المليون) قد تجاوزت الحد المسموح به عالمياً (1.50 جزء من المليون).

ويمكن اعتبار ان المياه الجوفية لهذه المناطق غير صالحة للشرب.

وقد اوضحت النتائج ان المياه الجوفية لمنتصف و اقصى شرق المحلية هي الأكثر تأثراً بالفلوريد في حين ان تلك التي في شمال شرق المحلية هي الأكثر تأثراً بالملوحة.

7
<table>
<thead>
<tr>
<th>List of contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>al-ayh</td>
<td>I</td>
</tr>
<tr>
<td>Dedication</td>
<td>II</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>III</td>
</tr>
</tbody>
</table>
Chapter one

1.1 Introduction

1.1.1 Structure and form of water
1.1.2 Water percent on Earth
1.1.3 Water pollution
1.1.4 Sources of water
1.1.4.1 Surface water
1.1.4.2 Sources of surface water are
1.1.5 Subsurface water
1.1.5.1 Groundwater
1.1.5.2 Groundwater quality
1.1.5.3 Salinity
1.1.5.4 Groundwater contaminants
1.1.5.5 Groups of contaminants
1.1.6 Possible health effects
1.2 literature review
1.2.1 Physical properties
1.2.1.1 Electrical conductivity
1.1.1.2 Color
1.2.1.3 Taste and odor
1.2.1.4 Turbidity
1.2.1.5 Potential of hydrogen
1.2.1.6 Total dissolved solids (T.D.S)
1.2.2 Chemical substances
1.2.2.1 Alkalinity
1.2.2.2 Total hardness
1.2.2.3 Fluoride
1.2.2.3.1 Fluoride health effects
1.2.2.4 Chloride
1.2.2.4.1 Chloride health effects
1.2.2.5 Sulphate
1.2.2.5.1 Sulphate health effects
1.2.2.6 Nitrate and nitrite
1.2.2.6.1 Nitrate and nitrite health effect
1.2.2.6.1.1 Effects of non-cancer
1.2.2.6.1.2 Effects of cancer
1.3 Hydrological formation of Kamleen locality
1.3.1 Geological column of Kamleen locality
1.3.1.1 The modern formations reservoir
1.3.1.2 Jazeera reservoir
1.3.1.3 Nobian sand stone underground reservoir
1.3.2 Salinity problems
1.4 Objectives
Chapter two

2 Materials and methods

2.1 Sampling

2.2 Experimental work

2.3 Materials

2.4 Instruments

2.5 Physical techniques

2.5.1 Determination of pH

2.5.2 Determination of turbidity

2.5.3 Determination of electrical conductivity

2.5.3.1 Procedure

2.5.4 Determination of total dissolved solids (T.D.S)

2.5.4.1 Procedure

2.6 Chemical techniques

2.6.1 Determination of alkalinity

2.6.1.1 Procedure

2.6.2 Determination of total hardness

2.6.2.1 Procedure

2.6.3 Colorimetric determination of nitrite

2.6.3.1 Preparation of sulphanilamide solution

2.6.3.2 Preparation of standard nitrite

2.6.3.3 Preparation of standard solutions for standard addition method
2.6.4.1 Determination of chloride “potentiometric method (ISE)"

2.6.4.1.1 Introduction

2.6.4.1.2 Preparation of standard solution

2.6.4.1.3 Procedure

2.6.4.2 Determination of chloride (titrimetric method)

2.6.4.2.1 Procedure

2.6.5.1 Potentiometric determination of nitrate

2.6.5.1.1 Introduction

2.6.5.1.2 Preparation of standard solution

2.6.5.1.3 Procedure

2.6.5.2 Colorimetric determination of nitrate

2.6.5.2.1 Introduction

2.6.5.2.2 Preparation of standard solution

2.6.5.2.3 Procedure

2.6.6.1 Colorimetric determination of sulphate

2.6.6.1.1 Introduction

2.6.6.1.2 Preparation of standard solution

2.6.6.1.3 Procedure

2.6.6.2 Gravimetric determination of sulphate

2.6.6.2.1 Procedure

2.6.6.2.2 Filtration and ignition

2.6.7.1 Determination of fluoride

2.6.7.1.1 Preparation of standard of fluoride

2.6.7.1.2 Procedure
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.7.2 Potentiometric determination of fluoride</td>
<td>41</td>
</tr>
<tr>
<td>2.6.7.2.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>2.6.7.2.2 Preparation of standard solution of fluoride</td>
<td>41</td>
</tr>
<tr>
<td>2.6.7.2.3 Procedure</td>
<td>42</td>
</tr>
</tbody>
</table>

Chapter three

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Results and discussion</td>
<td>43</td>
</tr>
<tr>
<td>3.1 Physical properties</td>
<td>43</td>
</tr>
<tr>
<td>3.1.1 Determination of (pH) and electrical conductivity (EC) using potentiometric and colorimetric methods</td>
<td>43</td>
</tr>
<tr>
<td>3.1.2 Determination of total dissolved solids (T.D.S) and turbidity</td>
<td>45</td>
</tr>
<tr>
<td>3.2 Chemical composition</td>
<td>49</td>
</tr>
<tr>
<td>3.2.1 Titrimetric determination of total hardness</td>
<td>49</td>
</tr>
<tr>
<td>3.2.2 Alkalinity</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2.1 Titrimetric determination of bicarbonate content</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2.2 Titrimetric determination of carbonate content</td>
<td>51</td>
</tr>
<tr>
<td>3.2.2.3 Total alkalinity</td>
<td>52</td>
</tr>
<tr>
<td>3.2.3 Fluoride content</td>
<td>56</td>
</tr>
<tr>
<td>2.2.3.1 Potentiometric determination of fluoride content</td>
<td>56</td>
</tr>
<tr>
<td>3.2.3.2 Colorimetric determination of fluoride content</td>
<td>59</td>
</tr>
<tr>
<td>3.2.4 Chloride content</td>
<td>61</td>
</tr>
<tr>
<td>3.2.4.1 Potentiometric determination of chloride content</td>
<td>61</td>
</tr>
</tbody>
</table>
3.2.4.2 Titrimetric determination of chloride content 65
3.2.5 Nitrate content 66
3.2.5.1 Colorimetric determination of nitrate 66
3.2.6.1 Potentiometric determination of nitrate content 69
3.2.6 Sulphate content 72
3.2.6.1 Colorimetric determination of sulphate 72
3.2.6.2 Gravimetric determination of sulphate content 74
3.2.7 Colorimetric determination of nitrite content using standard addition method 80

Chapter four

Conclusion 84
Recommendations 85

Chapter five

References 86

Chapter six

Appendixes 95
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.1)</td>
<td>International standard of drinking water</td>
<td>23</td>
</tr>
<tr>
<td>(2.1)</td>
<td>Calculation of alkalinity</td>
<td>3</td>
</tr>
<tr>
<td>(2.2)</td>
<td>Preparation of nitrite standard solutions for standard addition method</td>
<td>33</td>
</tr>
<tr>
<td>(3.1)</td>
<td>Electrical conductivity (E C) and (pH) values for Kamleen water samples</td>
<td>43</td>
</tr>
<tr>
<td>(3.2)</td>
<td>Total dissolved solids (T.D.S) and turbidity of Kamleen water samples</td>
<td>45</td>
</tr>
<tr>
<td>(3.3)</td>
<td>Descriptive statistic of physical contents</td>
<td>48</td>
</tr>
<tr>
<td>(3.4)</td>
<td>One-sample t-test statistics of physical contents</td>
<td>48</td>
</tr>
<tr>
<td>(3.5)</td>
<td>Total hardness of Kamleen water samples</td>
<td>49</td>
</tr>
</tbody>
</table>
(3.6) Alkalinity as bicarbonate of Kamleen water samples
(3.7) Alkalinity as carbonate of Kamleen water samples
(3.8) Alkalinity as bicarbonate, carbonate and hydroxide concentration of Kamleen water samples
(3.9) Descriptive statistics of the flowing parameter
(3.10) One-sample t-test of the flowing parameters
(3.11) Fluoride electrode calibration data
(3.12) Fluoride concentration in Kamleen water samples by direct potentialmetric measurement
(3.13) Fluoride absorptiometric calibration data
(3.14) Fluoride content of Kamleen water samples by colorimetric method
(3.15) Chloride electrode calibration data
(3.16) Chloride content of Kamleen water samples by potentiametric method
(3.17) Chloride content in Kamleen water samples by titrimetric method
(3.18) Nitrate absorptiometric calibration data
(3.19) Determination of nitrate content in Kamleen water samples by colorimetric method
(3.20) Nitrate electrode calibration data
(3.21) Nitrate content in Kamleen water samples by direct potentiometric measurement
(3.22) Sulphate absorptiometric calibration data 72
(3.23) Sulphate content in Kamleen water samples by colorimetric method 73
(3.24) Sulphate content in Kamleen area water samples by gravimetric method 74
(3.25) Descriptive statistics of flowing anions (group one) 76
(3.26) One-sample t-test of the flowing anions (group one) 76
(3.27) Descriptive statistics of flowing anions (group two) 77
(3.28) One-sample t-test of flowing anions (group two) 78
(3.29) Independent samples t-test of flowing anions 79
(3.30) Nitrite content absorptiometric standard addition data 80
(3.31) Spectrophotometric determination of nitrite content of Kamleen water samples by standard addition method 82
(3.32) Descriptive statistics of nitrite content 83
(3.33) One-sample t-test of nitrite content 83
(6.1) International standard of drinking water 124

List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.1) Structural and form of water</td>
<td>2</td>
</tr>
<tr>
<td>(1.2) Distribution of water on earth</td>
<td>3</td>
</tr>
<tr>
<td>(1.3) Distribution of water useable by human respectively</td>
<td>3</td>
</tr>
</tbody>
</table>
(3.1) Mean concentration of hardness and total alkalinity
(3.2) Fluoride electrode calibration curve
(3.3) Fluoride absorptiometric calibration curve
(3.4) Chloride electrode calibration curve
(3.5) Nitrate absorptiometric calibration curve
(3.6) Nitrate electrode calibration curve
(3.7) Sulphate absorptiometric calibration curve
(3.8) Mean concentration of fluoride, chloride, nitrate and sulphate (group one)
(3.9) Mean concentration of fluoride, chloride, nitrate and sulphate (group two)
(6.1) Spectrophotometric determination of nitrite content in Fadoul water sample using standard addition method
(6.2) Spectrophotometric determination of nitrite content in Eltikaina Abood water sample using standard addition method
(6.3) Spectrophotometric determination of nitrite content in Elmasoodia water sample using standard addition method
(6.4) Spectrophotometric determination of nitrite content in Elsidaira water sample using standard addition method
(6.5) Spectrophotometric determination of nitrite content in Eltakala Abashar water sample using standard addition method
(6.6) Spectrophotometric determination of nitrite content in Abdelmalik Falata water sample using standard addition method
(6.7) Spectrophotometric determination of nitrite content in Elrayhana Elsigaira water sample using standard addition method

(6.8) Spectrophotometric determination of nitrite content in Elkamleen water sample using standard addition method

(6.9) Spectrophotometric determination of nitrite content in Elmeailig Elshargia water sample using standard addition method

(6.10) Spectrophotometric determination of nitrite content in Eldibaiba Abdallah water sample using standard addition method

(6.11) Spectrophotometric determination of nitrite content in Ellaota water sample using standard addition method

(6.12) Spectrophotometric determination of nitrite content in Kalkol water sample using standard addition method

(6.13) Spectrophotometric determination of nitrite content in Elhilaila water sample using standard addition method

(6.14) Spectrophotometric determination of nitrite content in Elgadeed Elsoug water sample using standard addition method

(6.15) Spectrophotometric determination of nitrite content in Elgadeed 1 water sample using standard addition method

(6.16) Spectrophotometric determination of nitrite content in Eldibab water sample using standard addition method

(6.17) Spectrophotometric determination of nitrite content
(6.18) Spectrophotometric determination of nitrite content in Elyaban water sample using standard addition method
(6.19) Spectrophotometric determination of nitrite content in Elbagair 2 water sample using standard addition method
(6.20) Spectrophotometric determination of nitrite content in Elbagair 1 water sample using standard addition method
(6.21) Spectrophotometric determination of nitrite content in Elrayhana Elkabira water sample using standard addition method
(6.22) Spectrophotometric determination of nitrite content in Elmeailig Elganobia water sample using standard addition method
(6.23) Spectrophotometric determination of nitrite content in Elgaba water sample using standard addition method
(6.24) Spectrophotometric determination of nitrite content in Eltorabi Elgadima water sample using standard addition method
(6.25) Spectrophotometric determination of nitrite content in Eltakala Rofaa water sample using standard addition method
(6.26) Spectrophotometric determination of nitrite content in Eliedaid water sample using standard addition method
(6.27) Spectrophotometric determination of nitrite content in Elnoba Samah water sample using standard addition method
method

(6.28) Spectrophotometric determination of nitrite content in Eltorabi Elgadida water sample using standard addition method

(6.29) Elgazira state map