Dedication

To my Father
Mother
Husband
Brothers
Sisters

To my best family and my best friends

Acknowledgment
Firstly, I thank Alla almighty who gave me health, Strength, and Patience to complete this Work.

I would like to express my deep gratitude to my Supervisor Dr. Abdalla Habila Ali Kaitan, for his guidance, support, valuable comments and advice.

I would like to express my Sincere thanks to my Family for Financial support.

Finally, I would like to thank my Friends for their moral support and continuous encouragement.
The methods of complex variables functions are extensively and effectively employed in the solution of a great variety of mathematical problems that arise in diverse fields of science. For example, the use of analytic functions in many cases yields sufficiently simple methods of solving boundary-value problems for the Laplace equation, to which various problems of hydro-and aerodynamics, the theory of elasticity, electrostatics and so forth reduce. This is due to the close connection between analytic functions of a complex variable and the harmonic functions of two real variables. We will examine certain general problems of the employment of analytic functions in the solution of boundary value problems for the Laplace equation and will give a number of value problems of the solution of problems in physics and mechanics. And a systematic investigation of basic boundary value problem for complex partial differential equations of arbitrary order restricted to model equations.
الخلاصة

إن طرق دوال المتغيرات المركبة واسعة وفعالة في حل المسائل الرياضية التي تنشأ في مختلف المجالات العلمية. على سبيل المثال، استخدام الدوال التحليلية في حالات متعددة تؤدي إلى طرق بسيطة بما فيه الكفاية على حل مسائل القيم الحدية لمعادلة لإبلاس، والتي تستنتج من استاتيكا المواقع وديناميكا الهواء ونظرية المرونة والكهرباء الساكنة. وهذا يرجع إلى العلاقة القصيرة بين الدوال التحليلية في المتغيرات المركبة والدوال التوافقية لمتغيرين حقيقين.

تم دراسة وتحديد المسائل العامة لاستخدام الدوال التحليلية في حل مسائل القيم الحدية لمعادلة لإبلاس وأعطت عدداً من الطرق لحل المسائل الفيزيائية والميكانيكية. كما تم دراسة نظام مسألة القيمة الحدية الأساسية في المعادلات التفاضلية الجزئية المركبة ذات رتبة اختيارية لنمذج المعادلات.
The Contents

Dedication ...i

Acknowledgment ...ii

Abstract ..iii

Abstract (Arabic) ..iv

The contents ..v

Introduction ..vi

Chapter 1

Generalities

Sec (1.1) The Relationship of Analytic And Harmonic Functions ..1

Sec (1.2) Applications to problems in Mechanics and physics ...10

Chapter 2

The Fundamental Tools

Section (2.1) The Complex Gauss Theorems ...37

Section (2.2) Cauchy-Pompeiu representation formulas ...39

Chapter 3

5
Introduction

Complex analysis is one of the most influence areas in mathematics. It has consequences in many branches like algebra, algebraic geometry, number theory, potential theory, differential equations, dynamical systems, integral equations, integral transformations, harmonic analysis, global analysis, operator theory and many others. It also has a lot of applications e.g in physics classical ones are elasticity theory, fluid dynamics, shell theory, underwater acoustics, quantum mechanics etc.

In particular the theory of boundary value problems for analytic functions as the Riemann problem of linear conjugacy and the general Riemann-Hilbert problem has had a lot of influence and even has initiated the theory of singular integral equations and index theory.

Complex analysis is one of the main subjects in university Curricula in mathematics. It is in fact a simply accessible theory with more relations to other subjects in mathematics than other topics. In complex analysis all structural concepts in mathematics are stressed. Algebraic, analytic and topological concepts occur and even geometry is involved. Also questions of ordering sets may be discussed in connection with complex analysis. Gauss, Cauchy and
Riemann were the main initiators of complex analysis and there was more than a century of rapid development. Nowadays complex analysis is not anymore in the center of mathematics 1st research. But there are still activities in this area and problems not yet solved. One of these subjects, complex methods for partial differential equations, will be presented in this research.

Some non-elementary results will be used as properties of some singular integral operators. They will be just quoted and somebody interested in the background has to consult references given. Everything else is just combinatorics. Hierarchies of differential equations, of integral representation formulas of Kernel functions of Green and Neumann functions arise by iterating processes leading from lower to higher order subjects. In this sense everything is evident. As Kronecker ones has expressed it, mathematics is the science where everything is evident. The beautiness of mathematics is partly reflected by esthetic formulas. All this will be seen below.

In chapter one, we will examine certain general problems of the employment of analytic functions in the solution of boundary value problems for the Laplace equation and will give a number of value problems of the solution of problems in physics and mechanics.

A systematic investigation of basic boundary value problem for complex partial differential equations of arbitrary order is started in chapters two, three and four restricted to model equations. In chapter two and chapter three the Schwarz, the Dirichlet, and the Neumann problems are treated for the inhomogeneous Cauchy-Riemann equation. The fundamental tools are the Gauss theorem and the Cauchy-Pompeiu representation. The principle of iterating these representation formulas are introduced which will enable treating higher order equations. Chapter four is the continuation of an investigation of basic boundary value problems for first order complex model partial differential equations. Model second order equations are the Poisson and the inhomogeneous Bitsadze equations. Different kinds of boundary conditions are posed as combinations of the Schwarz, the Dirichlet, and the Neumann conditions. Solvability conditions and the solutions are given in explicit form for the unit disc. Exemplarily the inhomogeneous polyanalytic equation is investigated as a model equation of arbitrary order.
Boundary Value Problems in Complex Analysis

مسائل القيمة الحدية في التحليل المركب

Thesis Submitted in Partial Fulfillment for the Degree of M.Sc. in Mathematics

: By
Mahasin Abaker Abdalla Ahmed

: Supervisor
Abdallah Habila Ali Kaitan

(Jan (2013}