بِشَمِ

قال: ﴿وَهُوَ الْسَمَاءُ الْعَالِيمُ الْأَكْرَمُ ﴾، ﴿أَنْفَعَ الْأَرْضَ وَالْمَاءَ الْأَلْبَانَ عِنْدَهُ ﴾ مَّنْهُ ﴿إِذَا أُنْفِرَ الْأَنفُذُهُ إِنَّ فِي ذَلِكَ لَآيَاتٌ لِفَقْوَانِ ﴾ يَوْمَۚ ﴿سُورَةُ الْرَمَٰدَٰنَ (99)﴾

صِدِّيق

سورة الرَمَٰدَٰنَ (99)
To ...

My mother and my father
My sisters

Acknowledgement
I wish I am able to give him the appreciation he deserves, he never stopped giving me effort and time, and he offered me advice and support and never stopped giving them to me: Prof. Mohamed Abd Elkareem.

I am indebted to those who supported me and guided me in my search for knowledge: Dr. Haidar Abd. Algadir Mohamed, Dr. Elkheir Mugudam, Dr. Alshikh Abd Allah, Dr. Alawea Abd Allah.

To all those who contributed to this research I am extremely grateful.
Abstract

Phytochemical screening of the alcoholic extract of the *Mitracarpus hirtus* indicated the presence of flavonoids, alkaloids and glycosides. Steroids were not detected. It was decided to investigate the flavonoids of this herb due to their medicinal value and relative abundance.

The crude product obtained from the alcoholic extract was re-extracted with hexane, chloroform and ethyl acetate. The ethyl acetate extractive gave positive test for flavonoid but the chloroform extractive did not. The ethyl acetate extractive was subjected to paper chromatography, which indicated the presence of one major flavonoid. This flavonoid was obtained in the pure state by preparative paper chromatography.

The spectral studies (UV, IR) of this flavonoid indicated that it is a 5, 7- dihydroxydihydroflavonol.
الخلاصة

اجريت اختبارات فيتوكميميائية للمستخلص الكحولي لعشبه حنتوت، حيث اتضح أنه يحتوي على فلافلونيدات وقلويات وجليكوسيدات وعدم احتوائه على استيرويدات. بدأت دراسة تفصيلية للفلافلونيدات التي يحتويها النبات لوفرتها بالنبات وول أدمنتها الطبية، حيث تم استخلاص المستخلص الكحولي للنبات مرة أخرى باستخدام الهكسان والكلوروفورم وخلوات الإيثل. اختبار الفلافونيد أعطى نتيجة ايجابية عند استخدام مستخلص خلات الإيثل بينما أعطى نتيجة سلبية عند استخدام مستخلص الكلوروفورم. استخدمت كروماتوغرافيا الورقية لفصل الفلافونويد الرئيس في الهيئة النقيبة من مستخلص خلات الإيثل. اجريت دراسات طيفية (UV, IR) لهذا المركب حيث اوضحت أنه من المحتمل ان يكون عباره عن 7,5-ثنائي هيدروكسي ثنائي هيدروفلافونول.
List of contents

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>الأيه</td>
<td>i</td>
</tr>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>الخلاصة</td>
<td>v</td>
</tr>
<tr>
<td>List of contents</td>
<td>vi</td>
</tr>
</tbody>
</table>

Chapter one

1-Introduction

<table>
<thead>
<tr>
<th>Arabic</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1-</td>
<td>1.1-</td>
</tr>
<tr>
<td>General approach</td>
<td>General approach</td>
</tr>
<tr>
<td>1.2-</td>
<td>1.2-</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>Nomenclature</td>
</tr>
<tr>
<td>1.2.1-</td>
<td>1.2.1-</td>
</tr>
<tr>
<td>Phenylbenzopyran (C₆-C₃-C₆ Backbone)</td>
<td>Phenylbenzopyran (C₆-C₃-C₆ Backbone)</td>
</tr>
<tr>
<td>1.2.2-</td>
<td>1.2.2-</td>
</tr>
<tr>
<td>Isoflavonoids</td>
<td>Isoflavonoids</td>
</tr>
<tr>
<td>1.2.3-</td>
<td>1.2.3-</td>
</tr>
<tr>
<td>Neoflavonoids</td>
<td>Neoflavonoids</td>
</tr>
<tr>
<td>1.2.4-</td>
<td>1.2.4-</td>
</tr>
<tr>
<td>Minor flavonoids</td>
<td>Minor flavonoids</td>
</tr>
<tr>
<td>1.3-</td>
<td>1.3-</td>
</tr>
<tr>
<td>Biosynthesis of flavonoids</td>
<td>Biosynthesis of flavonoids</td>
</tr>
<tr>
<td>1.3.1-</td>
<td>1.3.1-</td>
</tr>
<tr>
<td>Biosynthesis of flavonoid precursors</td>
<td>Biosynthesis of flavonoid precursors</td>
</tr>
<tr>
<td>1.3.2-</td>
<td>1.3.2-</td>
</tr>
<tr>
<td>Formation of chalcones</td>
<td>Formation of chalcones</td>
</tr>
<tr>
<td>1.3.3-</td>
<td>1.3.3-</td>
</tr>
<tr>
<td>Formation of aurones</td>
<td>Formation of aurones</td>
</tr>
<tr>
<td>1.3.4-</td>
<td>1.3.4-</td>
</tr>
<tr>
<td>Formation of flavanones</td>
<td>Formation of flavanones</td>
</tr>
<tr>
<td>1.3.5-</td>
<td>1.3.5-</td>
</tr>
<tr>
<td>Formation of isoflavone</td>
<td>Formation of isoflavone</td>
</tr>
</tbody>
</table>
Chapter two

2- Materials and method

2.1- Materials
2.1.1- Collection of plant material
2.2- Methods
2.2.1- Preparation of test reagents for phytochemical screening
2.2.1.1- Flavonoid test reagents
2.2.1.2- Alkaloid test reagents
2.2.2- Preparation of plant extract
2.2.3- Phytochemical screening
2.2.3.1- Test for steroids 59
2.2.3.2- Test for alkaloids 60
2.2.3.3- Test for flavonoids 60
2.2.3.4 -Test for glycosides 61
2.2.4- Extraction of flavonoids from *Mitracarpus hirtus* 61
2.2.5- Paper chromatography of the ethyl acetate extractive 61
2.2.6- Preparative paper chromatography 62
2.2.7- UV shift reagents 62
2.2.8- The UV spectrum of FM in presence of UV shift reagents 63
2.2.8.1- The UV spectrum of FM in presence of sodium methoxide 63
2.2.8.2- The UV spectrum of FM in presence of AlCl₃ 63
2.2.8.3- The UV spectrum of FM in presence of AlCl₃/HCl 63
2.2.8.4-The UV spectrum of FM in presence of sodium acetate 64
2.2.8.5-The UV spectrum of FM in presence of boric acid/sodium acetate 64

Chapter three

3-Results and discussion 65

3.1-Phytochemical screening 65
3.2-Identification of FM 65

Recommendations 72

References