ٵڵٙؠۣڿ

بسم الله الرحمن الرحيم

قال تعالى: " فَتَعَالَى اللَّمُالْمَلِكُالْدَقُ أَوَلَاتَعْبَلْبِالْقُرْآنِ مِنْ قَبْلِ أَنْ يُقْضَىٰ إِلَيْكَ وَدْيُهُ أَوَقُلْرَبِّزِدْنِي عِلْمًا ﴿١١٤﴾"

حدق الله العظيم

سورة طه

DEDICATION

To my mother 'Soad'

My father 'Ahmed'

My sisters and brother

To my friends

And to all help me I want to say thanks

Acknowledgments

I am most grateful to Dr. Mohamed Ahmed Ali for his supervision, guidance and help. I would also like to thank my colleagues, Mohamed Osman, Andira and Khalid for freely giving of their time to assist me in all aspects of my research.

Special thanks to my mother and Amar for their help and encouragement. I would also like to acknowledge all other who help me and not mentioned here.

Table of Contents

Chapter NO	Contents	Page
	الأية	i
	Dedication	ii
	Acknowledgments	iii
	Contents	iv
	List of figures	V
	List of tables	vi
	List of abbreviations	vii
	Abstract	viii
	ملخص البحث	X
1	Chapter One	1
	1.1 Introduction	1
	1.2 Quality assurance	4
	1.3 Problem of the study	6
	1.4 Objective of the study	6
	1.9 Thesis outline	7
2	Chapter Two	
	2.1 Literature review	8
3	Chapter Three	
	Methodology of the study	
	3.1 Materials	22
	3.2 Method	23
4	Chapter Four	
	4.1 Results and Discussion	31
5	Chapter Five	
	5.1 Conclusion	41
	5.2 Recommendations	43
	5.3 References	44
	5.4 Appendices	45

List of Figures

Fig. No.	Figure Caption	Page No
(2.1)	showing performance of linear accelerator for photon and electron beams in years	17
(4.1)	Variation of practical Field size versus SSD	31
(4.2)	variation of output with field size	32
(4.3)	variation of output and SSD	33
(4.4)	Variation of output against SSD	33
(4.5)	output and temperature and pressure correction Factor	34
(4.6)	output and temperature	35
(4.7)	output and pressure	35
(4-8)	output and temperature pressure correction factor (K_{TP})	36
(4.9)	output and temperature	38
(4.10)	output and pressure	38
(4.12)	Penumbra values at different depth	40

List of tables

Table NO	Table Caption	Page NO
(2.1)	Showing Mechanical and radiation tests and their tolerance	16
(4.1)	Mechanical isocentric check	38
(4.2)	Laser alignment	38
(5.4)	Shows daily, weekly, monthly and annual frequency QC test with tolerance	45

List of abbreviations

RICK Radiation and isotopes center of Khartoum

QA Quality Assurance

QC Quality control

SSD Source Skin Distance

SAD Source Axis distance

ICRU International Commission on Radiation Unit and measurement

LINAC Linear accelerator

LASER Light amplification by stimulated emission of radiation

AAPM American Association of Physicists in Medicine

EPID Electronic portal imaging (device)

Gy Gray, unit of absorbed dose (1J/kg)

MLC Multileaf collimator

MU Monitor unit

PMMA Polymethyl methacrylate

ALARA As Low As Reasonably Practicable

IAEA International Atomic Energy Agency

IMRT Intensity Modulated Radiotherapy

XRT External Radiotherapy

XBRT External beam radiotherapy

TRS Technical report series

Abstract

This Study was performed to evaluate the linear accelerator performance in radiation and isotopes center Khartoum (RICK) concerning the mechanical tests done according to AAPM protocol and Canadian protocol. The result showed that the collimator isocenter rotation was optimum at 0 mm shift, Gantryisocenter rotation was at 2 mm shift and the table rotation was optimum at 0 mm shift i.e. all parameters were within the tolerance. Also the light and radiation field congruence showed 2 mm shift, the laser beam coincidence showed 2mm shift, the variation of field size (20x20, 14x14, 12x12, 10x10, 8x8, 6x6, 4x4 and 2x2cm²) versus SSD was optimum and the correlation was so significant at R² =0.998. The Dose rate increase with Field sizes increment due to scatter from collimator, in the other hand the dose decreases with SSD increment according to inverse square law which was verified for field size 10x10 cm² and 2x2 cm².

The temperature effect causes change in the output measurement according to the following equation: Y = 0.0041X+1.093, where Y refers to output in Gy/MU and X refers to temperature, while the pressure leading to change in the output measurement according to the following equation: Y = 0.063X + 7.298, where Y refers to output and X refers to pressure.

The effect (temperature and pressure correction factor) the output varies linearly according to the following equation: Y = 1.0129X + 0.2901, where Y refers to output and X refers to temperature pressure correction factor.

ملخص البحث

لقد تمت هذه الدراسه في مركز الخرطوم للعلاج بالاشعة والطب النووي لتقييم اداء جهاز المعجل الخطي وتمت بعض اختبارات الجوده المكيانيكيه وفق للبروتكولات الكندي والامريكي ولقد وجد أن نقطه دوران كل من محور الدوران(2mm) والمحدد (2mm) وطاوله العلاج (mm) وكذا تطابق الحقل الاشعاعي والضوئي (2mm) كما أن الليزرات متطابقه (2mm shift)،تغير الحقل الاشعاعي مع المسافه بين المصدر والسطح له علاقه خطيه بالنسبه للحقول 20x20,14x14,12x12,10x10,8x8,6x6,4x4,2x2 وتعتبر العلاقه ذات قيمه إحصائية مميزه $R^2 = 0.998$ كما ان معدل الجرعه تزيد بزياده الحقل الاشعاعي نسبه لتشتت الاشعه كما ان معدل الجرعه يقل بزياده المسافه من المصدر وذلك وفق لقانون التربيع العكسي لكل من الحقلين 10x10 و2x2 والغلاقة لها قيمة إحصائية حيث R^2 تقترب من الواحد.

بالنسبه لقياسات الجرعه تمت وفق لبرتكول الوكالة رقم 398 والتغير في خرج الجهاز مع درجة الحرارة والضغط وفق للمعادلتين Y=0.0041X+1.093 وY=0.063X+7.298 على التوالي.

ونجد أن تغيرات الجرعه مع ال (K_{TP}) بصوره خطيه وفق المعادله Y=1.0129 X+0.2901