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Abstract (1

The first part of the dissertation is a study of the theory of analytic
continuation (A.C)of function of complex variable .Theorems and
examples are given to investigate the topics of direct( A .C), (A.C) along
a curve, global analytic branch points, Riemann surfaces and their
construction .

The second part is devoted to application of (A.C) in some problems of
quantum mechanic . The generalized classical treatment of langevin
equation for a linear oscillator embedded in a bath of harmonic oscillators
is solved to measure rate of energy absorption from an external radiation
source . Quantum treatment applies (A.C).on the displacement imaginary
— time to obtain the real — time correlation.A brief description of the
implementation of the maximum entropy inversion method is given .
singular value decomposition method and numerical path integral Monte
—carol simulation are used to get numerical solution of the same problems
a bove.

Finally curves obtained by Fourier integrals (using A.C theory ) are
compare with carves obtained numerically ( using statistical and

simulation methods).



Introduction

1) in chapter 2 and 3 quantum dynamic is stimutated by performing
anumerical analytic continuation of imaginary time —corvelation
functions.

2) The time —correlation function calculate along the imaginary time
axis can be uniquely analytically continued to the real —time axis .

3) In this approach the total system is divided into a subsystem and a
bath .

4) The effect of the bath on the system is reated perturbatively
through bath time — correlation function .

5) The purpose of the persent stony is to examine the performanceoe
the maximum entropy ( ME) and sigular value decompostion
(SVD)analytic continuation methods to the problem of quantum
mechanical vibrational relaxation.

6) Complicated alomic and molecular systems can be approximated
very well by harmoic baths .

7) The one- dimensional oscillator coupled to a harmonic bath is apro
to type model for studying

vibrational relaxtion in in condensed phases .

11- Mdel system

let us consider an oscillator linearly coupled to bath of harmonic

oscillators .the Hamiltonian of the system is

H= Hosc + H bath +vint
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Example:
1.11 The analytical Continuation of Stieltjes’s function:

The function F(z) defined in ‘ phz ‘ < Tt by equation

d s

00
F()= [ e°
0
Is the Principal branch of the confluent hypergeometric function Y (1,1;z)
which has a logarithmic branch point at the origin.
Other branches can be obtained by analytical continuation in the
following way.

When R (z) >0 rotation of the path integration through a right angle
gives the integral

idt

Fl (Z) = {) e it (17)

it+z
As an alternative representation of f (z) in the right hand half plane.
But F1(z) is an analytic function, regular in
‘ v/ ‘> 0,-% Tl <phz <3/2 T, since the integral in (17) converge
uniformly on any compact set in this sector.

Thus while F (z) and F; (z) are the same function in

-1/2 Tt <phz <T, F,;(z) provide the analytical continuation
of F(z) across the cut ph z = Tt.

In the third quadrant, F(z) and F; (z) are different functions .

ca ds © idt
For F@z)-Fi(z) = [ e° - [ e™
0 745 0 z +it
o do
R> w z+ 0

=Lim [.e (18)



Where c is a boundary of the quadrant |o|<R,0<pho <1/2 1 inthe
complex 0 plane . When z is the third quadrant, the pole

0 = -z lies inside ¢ when R >‘ z‘ and so

F(z) - Fi(z) =2 i e* .

Thus Fi(z) = F(z) —2mie* (19)
Connect the two branches in the third quadrant. Although F(z) is

discontinuous across the negative real axis, F; (z) is continuous, and
hence, if a > 0,

F(-a+io) — F(-a- io) = -2 Tti €™

Stieltjes observed that both these limiting values can be expressed in
terms of a Cauchy principal value integral.

For if a >0 and if is the contour of (17) in dented upwards at

O =a, we have

> O-a R
Lim [e° do =0

This gives
00

00
P e ds -mie*- [ e® idt
0 s-a 0 it-a
or . q
S .
Fi(-a) = T - - 20
(a) = p fe* > -mie (20)
SinceF (-a+io) =F; (-a)
It follows that
+ . . K 1 e
F(-a i0) =pfe® : (21)

The asymptotic expansion of Fi(z) can be obtained at once from (17) by

integration by parts. The result is that
0



Ei(z) XD (k-1

k

zZ
as |z| —2> o in-%mn+§ <phz <32n-6<32m.
OI;Ience, by (%0)
Ple® ~ga - X(k-1)! (22)
0 ~ 1 o
—>
as a + oo the term involving e® being omitted since it is very

small compared with any terms of the series (22).
The asymptotic expansion (22) is a series of positive terms makes it more
difficult to estimate the best approximation, which can be made by taking

partial sums.
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