I would like to express my thanks, sincere appreciations and deep gratitude to my supervisor Dr. El humodi Ahmed Saeed, Dean, College of Medical Laboratory Science, Sudan University for Science & Technology for his continuous significant encouragement and support throughout this thesis.

My thanks are also extended to the microbiology staff at Radiation & Isotopes Centre Khartoum, especially to my colleague Amal M. Mahgoub Khogli, for her continuous support and help in all technical part in this work.

My thanks and appreciations are also to the hospital health care-provider especially to cleaning team, operating theatre team, nurses, pharmacologists, oncologist and clinicians.
Abstract

This study was carried out to assess the level of bacterial infection acquired by cancer patients during hospitalization, identifying their causes and to evaluate the antibiotic used for its treatment. Also, it was carried to evaluate the efficiency of disinfectants and detergents used for hospital environmental sanitation.

One hundred sixty-five clinical samples were collected from patients suffering from different infection bacteriological laboratory investigation. They included 118 (71.5%) urine samples, 14 (8.4%) surgical wound swabs, 9 (5.4%) Ear swabs, 10 (6.0%) Throat swabs and 14 (8.4%) samples from other sites of infection. Floor swabs and air samples were also taken from patient’s wards. The identification of the isolated organisms utilized cultural characteristics, Gram's reaction, and biochemical tests.

A total of one hundred organisms were isolated and identified. 9 (9%) Staphylococci aureus, 30 (30%) Coagulase-negative Staphylococci, 25 (25%) E. coli, 7 (7%) Klebsiella pneumoniae, 7 (7%) Proteus mirabilis, 6 (6%) Pseudomonas aeruginosa, 2 (2%) Enterobacter spp., 7 (7%) Candida albicans, 3 (3%) Enterococci spp., 3 (3%) Streptococcus pyogenes, 1 (1%) Salmonella paratyphi B.

Antimicrobial susceptibility testing was carried out by disk diffusion method on Mueller Hinton agar medium by Kirby-Bauer technique. Gentamicin and streptomycin were found to be the most effective antimicrobial agent. All E.coli strains were found to be 100% susceptibility to gentamicin and streptomycin. Most coagulase-negative Staphylococci strains showed 100% and 70-90 % susceptibility to gentamicin, streptomycin and ampicillin, coloxacinil and penicillin.

Settle plate technique was used to obtained samples before and after surgical theatre disinfection by formalin and the bioload was found to be 1600/m³ and 400/m³, respectively.
أخذت هذه الدراسة لتحديد نسبة الإصابة بالأمراض البكتيريا المعدية المكتسبة، و المتعلقة بين مرضى الأورام الخبيثة ومعرفة مسبباتها، وذلك بين المرضى الذين ادخلوا لتلقى العلاج بالمركز القومي للعلاج بالأشعة والطبي النووي. وكذلك أجريت لتقسيم فعالية مضادات الحيوية المستخدمة في علاجها، وكذلك أجريت لمعرفة فعالية المطهرات المستخدمة في تطهير بيئة المركز.

مائه خمسة وستون عينة طبية جمعت من المرضى لإجراء الفحوصات الفيزيائية البكتيرية. شملت 118 (71.5%) عينة من البول و 14 (8.5%) مسحات من جروح متقيلة و 10 (6.0%) مسحات من المنجردة و 9 (5.4%) مسحات من الأذن و 8.5% عينة لالتهابات أخرى. كذلك أخذت مسحات قطعية لعنابر المرضى وعينات من هواء غرفة العمليات. لعزل هذه الجرثومات وا لتعرف عليها أستخدمت طرق كثيرة نمو مستعمراتها في واسطتها الزراعية وخصائص تفاعلاتها الحيوية وصبغة غرام للاستدلال عليها.

تم عزل و التعرف على مائة جرثومة. وهي كالآتي 9 (69%) البكتيريا العانقودية موجبة القواقلوز و 30 (30%) البكتيريا العانقودية سالبة القواقلوز (2%) البكتيريا العانقودية المعوية و 25 (25%) الاشريكيه القولونية و 6 (6%) البكتيريا المتقلبات الزنجارية و 14 (14%) بكتيريات قولونية أخرى و 7 (7%) فطريات الكانديا.

تم استخدام طريقة مولر-هنتون القياسية بطريقة Kirby-Bauer بكتيري لعمل اختبارات الحساسية للمضادات الحيوية المستخدمة ضد هذه الجرثومات المعزولة. ووجد أن الجنتاميسين والاستريتومايسين أكثر هذه المضادات فعالية وكانت درجة حساسية الاشريكيه القولونية 100% للجنتاميسين والاستريتومايسين. البكتيريا العانقودية سالبة القواقلوز كانت حساسيتها كالتالي 100% للجنتاميسين والاستريتومايسين وبين 70-90% للباماسيلين واميسيلين وكوكساسلين.
تم عدد المستعمرات الجرثومية المتحصل عليها من هواء غرفة العمليات في واسطتها الزراعية بطريقة (Settle plate technique) وكانت نسبة التلوث تقدر بـ 1600 إلى 400 م³ قبل و بعد التعقيم على التوالي بمادة الفورمالين.
Table of Contents

Preface i
Dedications ii
Acknowledgment iii
Abstract (In English) iv
Abstract (In Arabic) v
Table of Contents vi
List of Tables viii
List of Figures ix
Lists of color Plates x
List of Abbreviation xi

Chapter one 1. Introduction and Justification
Introduction 1
Objectives 2

Chapter Two: Literature review
2.1 Literature Review 3
2.1.1 The problem of infection in cancer 3
2.1.2 Incidence in cancer 4
2.1.3 Impact on Quality of Life 4
2.1.4 Etiology 5
2.1.5 Malignant-Related immunosupression 5
2.1.6 Treatment-Related infection 7
2.1.7 Surgery 11
2.1.8 Pathophysiology 13
2.1.9 Assessment 14
2.1.10 Diagnostic Laboratory Evaluation 15
2.1.11 Treatment of Infections in People with Cancer 15
2.1.12 Types of Germs that Cause Infection in People with Cancer 16
2.2 Epidemiology of Nosocomial Infections 26
2.2.1 Sources of Microorganism that Cause Nosocomial Infections 27
2.2.2 Transmission of Infectious Microorganism 29
2.2.3 Susceptibility of patient to infections 30
2.2.4 Breaking the cycle of infection 34
2.2.4.1 Hand Washing 35
2.2.4.2 Isolation 36
2.2.4.3 Surveillance 36
2.2.5 Component of a control programe 38
2.2.6 Aspesis 40
2.2.7 Hospital Disinfection and Sterilization 41
2.2.8 Hospital Environmental Sanitation 42
2.3 Control of Microorganism: Chemical Agents 43
2.3.1 Terminology of chemical and antimicrobial agents 43
2.3.2 Characteristic of ideal chemical agent 45
2.3.3 Major group of disinfectant and antiseptics 46
2.3.4 Detergent 53
2.3.5 Chemical steriliants 56

Chapter Three: Materials and Methods
3.1 Materials 60
3.1.1 Media (Appendix 1) 60
3.1.1.1 CLED agar (cystine-lactose-electrolyte deficient medium) 60
3.1.1.2 MacConkey agar 60
3.1.1.3 Blood agar 60
3.1.1.4 Chocolate agar 60
3.1.1.5 Mueller Hinton agar 60
3.1.1.6 Peptone water 61
3.1.1.7 Kligler iron agar (KIA) 61
3.1.1.8 Selenite Enrichment Broth 61
3.1.1.9 Salmonella Shigella Agar (SS) 61
3.1.1.10 Sabouraud Agar 62
3.1.2 Reagent (Appendix 2) 62
3.1.2.1 Stains used in Gram's stain method 62
3.1.2.2 H₂O₂ for catalase test 62
3.1.2.3 Oxidase test (Cytochrome Oxidase) 62
3.1.2.4 Kovac's reagent strips for indole test 63
3.1.2.5 Plasma for coagulase test 63
3.1.2.6 Antimicrobial discs (Appendix 3) 63
3.1.3.1 Instruments 65
3.1.3.2 Glass wares 65
3.1.3.3 Other 66
3.2 Methods 66
3.2.1 Study area 66
3.2.2 Study population 66
3.2.3 Study duration 66
3.2.4 Collection of samples 66
3.2.5 Sample processing 67
3.2.6 Culturing of the specimens 68
3.2.7 Colonial morphology and colony counting 69
3.2.8 Gram stain 69
3.2.9 Biological tests 69
3.2.9.1 Catalase test 69
3.2.9.2 Oxidase test 69
3.2.9.3 Kligler iron agar 70
3.2.9.4 Indole test 70
3.2.9.5 Sensitivity Testing Techniques 71
3.2.9.5.1 Disk Diffusion Technique 71
3.2.10 Method of colony counting 73

Chapter Four: Results

4. Results 74
4.1 Clinical specimens 74
4.1.1 Isolation and identification 74
4.1.2 Gram's stains 75
4.1.3 Biochemical tests 75
4.1.4 Susceptibility testing of organism 75
4.2 Colonies counting 75

Chapter Five: Discussion

Discussion. 96

Chapter Six: Conclusion and recommendations
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Conclusion</td>
<td>98</td>
</tr>
<tr>
<td>6.2 Recommendations.</td>
<td>98</td>
</tr>
<tr>
<td>References</td>
<td>101</td>
</tr>
<tr>
<td>Appendixes</td>
<td>105</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>No.</th>
<th>Tables</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table. 2.1</td>
<td>Etiology of Infection in Patients with Cancer</td>
<td>7</td>
</tr>
<tr>
<td>Table. 2.2</td>
<td>Chemotherapeutic Agents Causing Myelosuppression and Stomatitis</td>
<td>9</td>
</tr>
<tr>
<td>Table. 2.3</td>
<td>Factor Which Increase the Risk of Nosocomial Infections in Patient with Compromised Defenses</td>
<td>31</td>
</tr>
<tr>
<td>Table. 2.4</td>
<td>Clinical Conditions and Procedures Associated with Compromised Host Defense Mechanisms</td>
<td>32</td>
</tr>
<tr>
<td>Table. 2.5</td>
<td>Factors Affecting a Patients Susceptibility to infection</td>
<td>33</td>
</tr>
<tr>
<td>Table. 2.6</td>
<td>Organization of Infection-Control Program</td>
<td>38</td>
</tr>
<tr>
<td>Table. 2.7</td>
<td>Antimicrobial Activity of Phenolic-Type Compound Compared with Phenol in Term of phenol Coefficient</td>
<td>47</td>
</tr>
<tr>
<td>Table. 2.8</td>
<td>Antibacterial Activity of Some Alcohols Expressed in Terms of Their phenol coefficient</td>
<td>48</td>
</tr>
<tr>
<td>Table. 2.9</td>
<td>Some Commonly Used Disinfectants and Antiseptics</td>
<td>55</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Summary of mechanism of antibacterial action of antiseptics and disinfectants</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Distributions of Samples According to Sites of infection.</td>
<td>77</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Distributions of Samples According to age.</td>
<td>77</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>The characteristic f colonies that grown in different media</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Grams's stains</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Biochemical Testing for gram-positive bacteria</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Biochemical Testing for gram-negative bacteria</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.17</td>
<td>Germ Test Tube for Candida albican</td>
<td>80</td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Percentage of different isolates</td>
<td>80</td>
</tr>
<tr>
<td>Table 4.19(a-j)</td>
<td>Sensitivity testing</td>
<td>81-85</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>No.</th>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.2.1</td>
<td>The infection cycle. Note that all the steps outlined must be completed in order for an infection to occur.</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 4.2</td>
<td>Percentage of different specimens</td>
<td>86</td>
</tr>
<tr>
<td>Fig. 4.3</td>
<td>The main sites of hospital acquired infection in Radiation & Isotopes Centre Khartoum</td>
<td>86</td>
</tr>
<tr>
<td>Fig. 4.4</td>
<td>Distributions of micro-organism identified as causing nosocomial infection in (RICK)</td>
<td>87</td>
</tr>
<tr>
<td>Fig. 4.5</td>
<td>Distributions of micro-organism identified as causing urinary tract infection</td>
<td>88</td>
</tr>
<tr>
<td>Fig. 4.6</td>
<td>Growth pattern of urinary pathogens in CLED Medium</td>
<td>89</td>
</tr>
<tr>
<td>Fig. 4.7</td>
<td>Distributions of micro-organism identified as causing surgical wound infections</td>
<td>90</td>
</tr>
<tr>
<td>Fig. 4.8</td>
<td>Distributions of micro-organism identified as causing ear Infections.</td>
<td>91</td>
</tr>
<tr>
<td>Fig. 4.9</td>
<td>Distributions of micro-organism identified as causing throat infections Isolates.</td>
<td>92</td>
</tr>
<tr>
<td>Fig. 4.10</td>
<td>Distributions of micro-organism identified as causing other Site Infections.</td>
<td>92</td>
</tr>
</tbody>
</table>
List of Plates

<table>
<thead>
<tr>
<th>No.</th>
<th>Plates</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 2.1</td>
<td>Hand impressions on agar plates showing result of effective handwashing</td>
<td>35</td>
</tr>
<tr>
<td>Plate 4.2</td>
<td>Patients ward's floor inoculated plates</td>
<td>93</td>
</tr>
<tr>
<td>Plate 4.3</td>
<td>Colonies of microorganism that have grown in blood base agar plate after being exposed to air before disinfection.</td>
<td>93</td>
</tr>
<tr>
<td>Plate 4.3</td>
<td>Colonies of microorganism that have grown in blood base agar plate after being exposed to air after disinfection.</td>
<td>94</td>
</tr>
<tr>
<td>Plate 4.5</td>
<td>Antimicrobial susceptibility testing by disk diffusion method.</td>
<td>94</td>
</tr>
<tr>
<td>Plate 4.6</td>
<td>Blood agar plate showing nonhemolytic white colonies Staphylococcus aureus</td>
<td>95</td>
</tr>
</tbody>
</table>
List of Abbreviations

RICK: Radiation & Isotopes Centre Khartoum
CDC: The Centre for Disease Control
UTI: Urinary Tract Infection
WSI: Wound Site Infection