بسم الله الرحمن الرحيم

: قال تعالى:

(علم الإنسان ما لم يعلم)

صدق الله العظيم
Acknowledgments

I would like to record my appreciation for unsparing help and keen advice provided by Dr. Mohamed El Fadil Jar El Nabi, the supervisor of this study.

Particular appreciation goes to all the staff of Renal Dialysis Center –Kosti Teaching Hospital, for their help and co-operation. My thanks also expands to include my colliques in Diagnostic Ultrasound Department –Ksti Teaching Hospital, for their help and advice.

Without the willing assistance of all these people it would have been difficult to produce this work.
Dedication

To my mother,

father,

brothers,

and sisters.

To my kid Doha and her mother,

To my teachers,

To all those who help me in preparation of this subject.
List of contents

Holly Quraan

Acknowledgments

Dedication

List of contents

List of tables

List of figures

List of abbreviations

Abstract (English)

Abstract (Arabic)

Chapter One

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1 Classification of Renal Failure</td>
<td>1-1</td>
</tr>
<tr>
<td>2 Acute renal failure (ARF)</td>
<td>1-1-1</td>
</tr>
<tr>
<td>2 Chronic renal failure (CRF)</td>
<td>1-1-2</td>
</tr>
<tr>
<td>2 Chronic renal failure</td>
<td>1-2</td>
</tr>
<tr>
<td>3 Treatment</td>
<td>1-3</td>
</tr>
<tr>
<td>3 Conservative management</td>
<td>1-3-1</td>
</tr>
<tr>
<td>3 Renal replacement therapy</td>
<td>1-3-2</td>
</tr>
<tr>
<td>4 Prevention of infections</td>
<td>1-3-3</td>
</tr>
</tbody>
</table>
6 Significance of the study 1-4
6 Objectives of the study 1-5
6 General objectives 1-5-1
6 Specific objectives 1-5-2
7 Methods and materials 1-6
7 Study area 1-6-1
7 Study population 1-6-2
7 Exclusion criteria 1-6-3
7 Methodology 1-6-4
7 Over view of the study 1-7

Chapter Two

9 Literature review 2
9 Anatomy of the kidney 2-1
9 Location and description 2-1-1
9 Covering 2-1-2
9 Fibrous Capsule 2-1-2-1
9 Perirenal fat 2-1-2-2
9 Renal fascia 2-1-2-3
10 Pararenal fat 2-1-2-4
10 Renal Structure
 Important Relations of the Right Kidney 2-1-3
 Important Relations of the Left Kidney 2-1-4
10 Blood supply 2-1-5
13 Lymph drainage 2-1-6
15 Nerve supply 2-1-8
15 Functional renal anatomy 2-2
16 Basic renal mechanisms 2-2-1
16 Glomerular filtration 2-2-1-1
16 Tubular reabsorption 2-2-1-2
17 Tubular secretion 2-2-1-3
17 Pathology of the kidney 2-4
17 Congenital diseases
 Conditions affecting the volume of renal tissue 2-4-1
 Bilateral agenesis of the kidneys 2-4-1-1
17 (Potter’s syndrome) 1
18 Unilateral agenesis 2-4-1
18 Disorders of differentiation 2-4-2
18 Anatomical abnormalities 2-4-3
18 Ectopic kidneys 2-4-3-1
18 Horseshoe kidney 2-4-3-2
19 Reduplication of vessels or ureters 2-4-3-3
19 Metabolic abnormalities 2-4-4
19 Renal tubular acidosis type (1) 2-4-4-1
 Space – occupying lesions 2-4-5
20 Renal cysts and cystic disease 2-4-5-1
20 Renal masses 2-4-5-2
21 Acute tubular necrosis 2-4-5-3
Renal Tract Inflammation and Infection

21 Pyelonephritis 2-4-7

22 Renal abscess 2-4-8

22 Glomerulonephritis Diffuse parenchymal lesions and renal failure 2-4-9 2-4-10

22 Acute tubular necrosis 2-4-10-1

24 Amyloid 2-4-10-2

24 Medullary sponge kidney Renal calculi and obstructive uropathy 2-4-10-3 2-4-11

25 Renal failure 2-4-12

25 Acute pre-renal kidney failure 2-4-12-1

25 Acute intrinsic kidney failure 2-4-12-2

26 Chronic pre-renal kidney failure 2-4-12-3

26 Chronic intrinsic kidney failure 2-4-12-4

26 Chronic post-renal kidney failure 2-4-12-5

26 Causes of Renal Failure 2-4-13

26 Acute renal failure 2-4-13-1 2-4-13-2

26 Pre-renal causes 1-1 2-4-13-3

27 Intrinsic renal causes 1-2 2-4-13-4

27 Post-renal causes 1-3

27 Chronic Renal Failure Kidney dialysis 2-4-13-2 2-5
28 Peritoneal dialysis 2-5-1
29 Hemodialysis 2-5-2
29 Acquired cystic kidney disease associate with dialysis 2-6
30 Renal ultrasound 2-7
30 Techniques 2-7-1
32 Sonographic Appearance 2-7-1
33 U/S Measurement of kidneys Renal measurements in different ethnicities 2-7-3
34

Chapter Three

36 Study area 3-2
36 Study population 3-2
36 Exclusion criteria 3-3
36 Study duration 3-4
36 Instrumentation 3-5
36 Technique 3-6
37 Parameters of measurement 3-7
37 Longitudinal measurement 3-7-1
37 Width 3-7-2
37 Thickness 3-7-3
37 Kidney volume 3-7-4
38 Kidney shape index 3-7-5
38 Measurement 3-8
38 Data analysis 3-9

Chapter four
Chapter five

46 Discussion
49 Conclusion
50 References

Appendices

52 Appendix (1)
58 Appendix (2)
List of Tables

<table>
<thead>
<tr>
<th>Page</th>
<th>Table</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Table (4-1)</td>
<td>1</td>
</tr>
<tr>
<td>39</td>
<td>Table (4-2)</td>
<td>2</td>
</tr>
<tr>
<td>40</td>
<td>Table (4-3)</td>
<td>3</td>
</tr>
<tr>
<td>40</td>
<td>Table (4-4)</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>Table (4-5)</td>
<td>5</td>
</tr>
<tr>
<td>41</td>
<td>Table (4-6)</td>
<td>6</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Kidney structure</td>
<td>Fig. (2-1)</td>
</tr>
<tr>
<td>12</td>
<td>Cross section of human kidney:</td>
<td>Fig. (2-1)</td>
</tr>
<tr>
<td>13</td>
<td>Anterior relations of both kidneys</td>
<td>Fig. (2-3)</td>
</tr>
<tr>
<td>14</td>
<td>Arterial blood supply of the kidney</td>
<td>Fig. (2-4)</td>
</tr>
<tr>
<td>23</td>
<td>Acute renal failure ,on ultrasound image</td>
<td>Fig. (2-5)</td>
</tr>
<tr>
<td>23</td>
<td>Chronic renal failure: As see on ultrasound image</td>
<td>Fig. (2-6)</td>
</tr>
<tr>
<td>33</td>
<td>Normal longitudinal scan of the right kidney</td>
<td>Fig. (2-7)</td>
</tr>
<tr>
<td>34</td>
<td>kidney measurements</td>
<td>FIG. (2-8)</td>
</tr>
<tr>
<td>42</td>
<td>Scatter graph showing decrease in Rt. Kidney volume as dialysis duration increase.</td>
<td>Fig. (4-1)</td>
</tr>
<tr>
<td>42</td>
<td>Scatter graph showing decrease in Lt. kidney volume as dialysis duration increases.</td>
<td>Fig. (4-2)</td>
</tr>
<tr>
<td>43</td>
<td>Scatter graph showing increase in Rt. Kidney shape index as dialysis duration increases .</td>
<td>Fig. (4-3)</td>
</tr>
<tr>
<td>43</td>
<td>Scatter graph showing decrease Lt. kidney shape index as dialysis duration</td>
<td>Fig. (4-4)</td>
</tr>
</tbody>
</table>
increases.

44 Scatter graph showing increase the Rt. Kidney volume as patients age increases.

44 Scatter graph showing increase in Lt. kidney volume as patients age increases.

45 Scatter graph showing increase Rt. Kidney volume as patient weight increases.

45 Scatter graph showing increase in Lt. kidney volume as patient weight increases.

List of Abbreviations

<table>
<thead>
<tr>
<th>Meaning</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquired cystic kidney disease associated with dialysis .</td>
<td>ACKDD</td>
</tr>
<tr>
<td>Adult polycystic kidney disease .</td>
<td>ADPKD</td>
</tr>
<tr>
<td>Acute renal failure</td>
<td>ARF</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Blood pressure</td>
<td>BP</td>
</tr>
<tr>
<td>Chronic renal failure</td>
<td>CRF</td>
</tr>
<tr>
<td>End stage renal disease</td>
<td>ESRF</td>
</tr>
<tr>
<td>Figure</td>
<td>Fig</td>
</tr>
<tr>
<td>Glomerular filtration rate</td>
<td>GRF</td>
</tr>
<tr>
<td>Haemodialysis</td>
<td>HD</td>
</tr>
<tr>
<td>Megahertz</td>
<td>MHz</td>
</tr>
<tr>
<td>Polycystic kidney disease</td>
<td>PCKD</td>
</tr>
<tr>
<td>Peritoneal dialysis</td>
<td>PD</td>
</tr>
<tr>
<td>Renal cell carcinoma</td>
<td>RCC</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>SD</td>
</tr>
<tr>
<td>Statistical Software Package for Social Sciences</td>
<td>SPSS</td>
</tr>
</tbody>
</table>
Abstract

This study set out to determine renal morphology in patients with chronic renal failure whom had been on haemodialysis, using ultrasound. In this study, 55 patients with CRF and on HD, were studied by ultrasonography which is accepted to be the most suitable noninvasive technique for the estimation of renal morphology. We use ultrasound scanner (Mindray (DP-3300) China), and (2.5-5) MHz sector transducer. This had been done at Kosti Teaching Hospital– Renal Dialysis Center. The kidney length, width and thickness were measured using electronic caliber, and kidney volume was calculated using the formula:

\[
\text{kidney volume} = \text{kidney length} \times \text{kidney width} \times \text{kidney thickness} \times 0.523
\]

Renal shape index was calculated using the formula:

\[
\text{kidney shape index} = \frac{\text{kidney length}}{\text{kidney width} + \text{kidney thickness}}
\]

Of the study group, 58.2% were males and 41.8% were females, their ages were (47.3 ± 16.6) years, weight (52±15.3) kg, and have been on dialysis for (2.8±2.1) years.

This study conclude that, the right kidney found to be more echogenic than the left kidney and the left kidney is more liable to cystic degeneration than the right kidney. In this study, it has been noticed that there is a negative and significant correlation between kidney volume and dialysis duration on both kidneys, and there is positive correlation between the patient age and kidney volume. Our data also showed that kidney volume has positive correlation with patient weight.
The right kidney becomes thinner and narrower while the left kidney becomes wider and thicker as dialysis duration increases

Summary of the study

This study was conducted to evaluate the visible kidney shape in patients with chronic kidney disease using dialysis. The study was conducted in the dialysis center at the instructional hospital in Khartoum State, Sudan, to monitor changes in the visible kidney shape. It was related to several variables such as age and duration of treatment. We examined 55 patients using an ultrasound device (Mindray (PD – 3300) China) and (5 – 2.5) MHZ sector transducer.

The study sample included 58.2% males and 41.8% females, with an average age of (47.3 ± 16.6) years and (52 ± 15.3) kilograms. The patients had been on dialysis for an average of (2.8 ± 2.1) years. We measured the length, width, and thickness of each kidney separately, and calculated the kidney volume using the formula: kidney volume = (length × width × thickness) / 2. We calculated the kidney shape index using the formula: kidney shape index = length / (width + thickness) × 15.

The study found that the right kidney becomes thinner and narrower while the left kidney becomes wider and thicker as dialysis duration increases.
تم تحليل البيانات وحساب العلاقات بين المتغيرات باستخدام برنامج Statistical Software Package for Social Sciences (SPSS)

وقد خلصت الدراسة أن الوجات فوق الصوتية من أسهل وأسهل وسائل الفحص لتقييم الشكل الظاهري للكلئ عند مريض فشل الكلئ المزمن لأنها لا تحوي تدخلاً مباشرًا لأجزاء الفحص. وقد أوضحت الدراسة أن الكلئ اليمن أكثر قابلية لعكس الوجات فوق الصوتية مقارنة بالكلئ اليسرى وأن الكلئ اليسرى أكثر قابلية لتكوين الخراجات الناتجة عن عملية الاستصاف الدموي الصناعي مقارنة بالكلئ اليمن. أما حجم الكلئ فأنا حجم الكلئ يتناسب عكساً مع مدة التعرض لعملية الاستصاف الدموي الصناعي وطردياً مع عمر الريض. ودراسة العلاقة بين وزن الريض.

و حجم الكلئ عند هؤلاء المرضى فأنا حجم الكلئ يتناسب طردياً مع وزن الريض. كما أنه كلما زادت مدة تعرض الكلئ للاستصافة الدموي فأن الكلئ اليمن تقل سمكاً وعرضها وتزداد طولاً، أما الكلئ اليسرى فأنها تزداد سمكاً وعرضها وتقل طولاً.