Dedication

To soul of my Father

To my Mother

Sisters and Brothers

My Wife and Daughters: Aasha & Afraa
Acknowledgment

First, of all I am grateful to Almighty Allah For his great blessing. My sincere thanks and gratitude to my Supervisor Dr. Elsadig Al-Mahdi, for encouragement help, guidance and continued support. More thanks to Co-Supervisor Professor. Sami Mohammed Tambal. Due thanks are extended to the staff of the Department of Agricultural Engineering, College of Agricultural Studies Sudan University of Science and Technology. Thanks are also due to the staff of College of Agricultural Science Dongola University.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>I</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>II</td>
</tr>
<tr>
<td>Table of contents</td>
<td>III</td>
</tr>
<tr>
<td>List of tables</td>
<td>VI</td>
</tr>
<tr>
<td>List of plates and figures</td>
<td>VIII</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>IX</td>
</tr>
<tr>
<td>English abstract</td>
<td>X</td>
</tr>
<tr>
<td>Arabic abstract</td>
<td>XII</td>
</tr>
</tbody>
</table>

(CHAPTER ONE (Introduction)

1.1 Introduction

(CHAPTER TWO (Literature Review)

2.1 Introduction
2.2 Sunflower crop
2.3 Sunflower in the Sudan
2.4 Crop water requirement
2.5 Methods to calculate crop water requirement
2.5.1 Direct measurement of crop evapotranspiration
2.5.2 Estimated crop evapotranspiration ETc
2.6 Deficit irrigation

3
2.7 Effect of irrigation practices on sunflower yield 11
2.8 Definition of soil tillage 17
2.9 Tillage objectives 17
2.1 Tillage classes and systems 18

2.1 Effect of tillage on soil physical properties 19

2.1 Effect of tillage on soil infiltration rate 21

2.1 Effect of tillage on soil moisture content 22

2.1 Effect of tillage on crops yield 22

2.1 Effect of tillage on sunflower yield 23

2.1 Sowing methods 24

(CHAPTER THREE (Material & Methods

3.1 The experimental site 25
3.2 Soil of the experimental site 25
3.2. Profile description 25

3.3 Experimental design and treatments 26
3.4 Cultural practices 31
3.4. The seed 31
3.4. Sowing 31
<table>
<thead>
<tr>
<th>Section</th>
<th>Parameter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.</td>
<td>Sowing date</td>
<td>31</td>
</tr>
<tr>
<td>3.4.</td>
<td>Irrigation water measured</td>
<td>31</td>
</tr>
<tr>
<td>3.5.</td>
<td>Soil parameters</td>
<td>31</td>
</tr>
<tr>
<td>3.5.</td>
<td>Soil moisture contents</td>
<td>31</td>
</tr>
<tr>
<td>3.5.</td>
<td>Infiltration characteristic</td>
<td>32</td>
</tr>
<tr>
<td>3.5.</td>
<td>Bulk density</td>
<td>32</td>
</tr>
<tr>
<td>3.5.</td>
<td>Particle density</td>
<td>33</td>
</tr>
<tr>
<td>3.5.</td>
<td>Soil porosity</td>
<td>33</td>
</tr>
<tr>
<td>3.6.</td>
<td>Vegetative plant parameters</td>
<td>33</td>
</tr>
<tr>
<td>3.6.</td>
<td>Plant height</td>
<td>33</td>
</tr>
<tr>
<td>3.6.</td>
<td>Stem diameter</td>
<td>33</td>
</tr>
<tr>
<td>3.6.</td>
<td>(Leaf area index (L.A.I)</td>
<td>34</td>
</tr>
<tr>
<td>3.7.</td>
<td>Yield parameters</td>
<td>34</td>
</tr>
<tr>
<td>3.7.</td>
<td>(Head diameters (cm)</td>
<td>34</td>
</tr>
<tr>
<td>3.7.</td>
<td>Number of seed per head</td>
<td>34</td>
</tr>
</tbody>
</table>
3.7. Thousand seed weights 34
3.7. Seed yield per feddan 34
3.8. Statistical analysis 34

CHAPTER FOUR (Results and Discussion)

4.3. Effect of tillage on Soil parameters 36
1. Bulk density 36
2. Porosity percentage 36
3. Infiltration rate 38
4. Crop water requirement 38
5. Water demand 38
6. Moisture content 40

4.2. Effect of different treatments on Vegetative parameters 44
1. Effect of Irrigation water levels 44
2. Effect of sowing methods 46
2. Effect of tillage types 46
CHAPTER FIVE

Conclusions 70

Recommendations 17

References 73

Appendices 85

LIST OF TABLES

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Mean values of bulk density in g/cm³ at 0.0 - 0.25m depth for the</td>
<td>37</td>
</tr>
<tr>
<td>2011 and 2012 seasons for the four tillage treatment</td>
<td></td>
</tr>
<tr>
<td>4.2 Mean values of porosity % at 0.0 - 0.25m depth for the</td>
<td>37</td>
</tr>
</tbody>
</table>
2011 and 2012 seasons for the four tillage treatment

4.3 F values from ANOVA table for soil moisture contents in both seasons

4.4 Effect of tillage treatment on soil moisture content for both seasons

4.5 Effect of sowing method (Ridge and Flat) treatment on soil moisture content for both seasons

4.6 Effect of applied water amount treatment on soil moisture content

4.7 F value for vegetative parameters in both seasons

4.8 Effect of irrigation water levels treatments on vegetative parameters of sunflower (*Helianthus annuus* L) for both seasons

4.9 Effect of sowing methods treatments on vegetative parameters of sunflower (*Helianthus annuus* L) for both seasons

4.1 Effect of tillage treatments on vegetative parameters of sunflower (*Helianthus annuus* L) for both seasons

4.1 Interaction effect of (tillage and sowing methods) on vegetative parameters

4.1 Interaction effect of (tillage and irrigation water levels) on vegetative parameters

4.1 Interaction effect between (sowing methods X irrigation water amount) on vegetative parameters

4.1 Effect of interaction between tillage, sowing methods and irrigation water levels on vegetative parameters

4.1 Interaction effect between (tillage X sowing methods) on vegetative parameters
Interaction effect between (tillage X irrigation water levels) on yield parameters

Interaction effect between (Sowing methods X Irrigation water levels) on yield parameters

Interaction effect between tillage X sowing methods X irrigation water levels on yield parameters

F value for yield parameters in both seasons
LIST OF PLATES AND FIGURES

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLATES</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Experimental layout 28</td>
</tr>
<tr>
<td>2</td>
<td>Three-body disc plow 29</td>
</tr>
<tr>
<td>3</td>
<td>Heavy disc harrow 29</td>
</tr>
<tr>
<td>4</td>
<td>Chisel plow 29</td>
</tr>
<tr>
<td>5</td>
<td>Ridge plot 30</td>
</tr>
<tr>
<td>6</td>
<td>Flat plot 30</td>
</tr>
<tr>
<td>7</td>
<td>Parshall flume 2inch 35</td>
</tr>
<tr>
<td>8</td>
<td>Double ring cylinder infiltrometer 35</td>
</tr>
<tr>
<td>FIGURES</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Infiltration rate in cm for the different tillage treatments 39</td>
</tr>
<tr>
<td>4.2</td>
<td>cumulative infiltration (cm) for the different tillage treatments 39</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of different treatments on head diameters (cm) 58</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of different treatments on number of seed/head 58</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of different treatments on thousand seed weight (gm) 59</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ARS Agricultural Research Service
B.C Before century
BF Beginning flower stage
CT Conventional tillage
CWR Crop water requirement
DAS Day after sowing
ET_a Actual evapotranspiration
ET_c Crop evapotranspiration
FAO Food and agriculture organization
FB Flower bud stage
Ha Hectares
HI Harvesting index
HYV_s High yield varieties
ABSTRACT

A field study was conducted to known the effect of three tillage types (harrowing, disking, chiseling and control (zero tillage)) and two sowing methods (Ridge and flat) and irrigation water levels (100%ETc, 85% ETc and 75% ETc) on sunflower crop (*Helianthus annuus* L.) hybrid hysun33 in summer season during (2011- 2012) in Faculty of Agricultural Science farm, University of Dongola, Northern State by

A two-year field experiment was carried out using a strip-split plot arranged in randomized complete block design
with four replications in two seasons 2011 – 2012. Recognized standard methods were used for assessing yield, vegetative growth, soil physical properties and field :water regimes. Results can be summarizing as follows

Significant differences in yields were obtained at 100%ETc irrigation water levels. This indicates the sensitivity of the crop to water stress. Analysis of variance, in both seasons, showed significant differences due to tillage treatments. The highest values in yield were obtained under harrowing treatments and lowest values were obtained under no-tillage treatment. This may be attributed to the fact that sunflower plant is a tap rooted plant that penetrates well in tilled soils. The number of seed per head was not affected by tillage treatments, water stress and sowing methods. It seems that these characters are genetically .control rather than environmentally affected

Sunflower is well known for its empty seeds problem. 100% ETc irrigation water level showed no improvement in the reduction of the number of empty seeds, but, on the reverse the number of empty increased. This implies that the number of empty seeds phenomenon is associated with level of irrigation at a certain growth stages of the plant life duration. On the other hand there was no .significant difference due to sowing methods

Full 100%ETc should be given to the crop to get maximum yield. Empty seeds should be studied under different .deficit irrigation levels at mid stage of plant growth
الخلاصة

أجريت هذه الدراسة لمعرفة تأثير ثلاثة عمليات حراثية مختلفة (المشط الفرضي الثقيل، محراث فرضي ومحراث حفاض) بالإضافة إلى ارض غير محروثة كشاهد وطريقتين للزراعة (احواض مسرية واحواض مسطحة) وثلاثة مستويات مياه مختلفة (الري بالعجز، 100%)
85% و75% من الاحتياج المائي للمحصول على محصول زهرة الشمس (Helianthus annuus L) الصنف هاي ص 33 في الموسم الصيفي لموسمين متتاليين (2011 - 2012) بمزرعة كلية العلوم الزراعية - جامعة دنقلا - الوزارة الشمالية بتصميم القطع المنشقة - المشتقة بتوزيع القطاعات العشوائية الكاملة مع 4 مكررات لموسمين. تم استخدام طرق قياسية لأخذ قياسات الانتاجية، تطور النمششو، التربة وكمية مياه الري يمكن تلخيص النتائج فيما يلي.

أظهرت النتائج فروقات معنوية في الإنتاجية بمستوى مياه ري 100% من الاحتياج المائي للمحصول وكان ذلك مؤشر واضح لحساسية المحصول للشدو العملي. أيضاً تحليل التباين في الموسمين اظهر فروقات معنوية نتيجة لعمليات الحراثة المختلفة وقد حققت الفروقات في النمط القروصي الثقيل اعلي قيمة للإنتاجية وكانت الإنتاجية بالأرض الغير محروقة متدنية وهذا يرجع الى ان محصول زهرة الشمس له جذوره وتدية تختبر التربة المحروقة بسهولة. بينما نجد ان عدد البذور في القرص لم يتأثر بالمعاملات المختلفة وبدو ان هذه خاصية محكومة وراثياً ليس للعوامل البيئية أي تأثير فيها.

معروف ان محصول زهرة الشمس بها مشكلة البذور الفارغة وانتشار النتائج الا ان معاملة مياه الري ETc100% لم تظهر أي تحسن في تقليل نسبة البذور الفارغة بل علي العكس فقد اعطلت نسبة أكبر مقارنة مع معاملات الري الاخرى. وهذا يشير الى ان مشكلة نسبة البذور الفارغة مرتبطة بكمية مياه الري في مرحلة محددة من دوره حياة المحصول. على صعيد آخر لم تظهر أي فروقات معنوية بين الزراعة بالحواض السطحية والاوحاض المستوية. معاملة مياه الري ETc100% من الاحتياج المائي للمحصول اعطى إنتاجية عالية ويمكن معالجة مشكلة البذور الفارغة وذلك بدراسة اثر الري بالعجز لمراحل النمو الوسطي المحصول.