
Sudan University of Science and Technology
College of Graduate Studies

A Framework for Free and Open Source
Software Best Practices

لمفتوحة وا الحرة برمجيات ل ل الممارسات لأفضل رعمل إطا
المصدر

A thesis submitted in partial fulfillment of the
requirements for the degree of M.Sc in Computer Science

Prepared by:
Mohammed Sharief Abd El Rahman

Supervisor:
Dr. Mohammed Awad Elshakh

January 2010

Chapter One
Introduction

2

1.1 Background
 In the last ten years, some free software and open source

projects have been extremely successful which has attracted the

attention of not only the practitioner, but also the business and the

research communities. These successes present an important

question “what kind of features and innovations offered by these?”

 There are many supporters for this direction whose encourage to

follow these practices as a new approach for the software

development process but still there are many problems not

addressed yet, Especially the ad-hoc nature of open source

development may result in poor quality software or failures for a

number of volunteer projects [1].

 In short, OSS is a software whose source code may be freely

modified and redistributed with few restrictions, and which is

produced by loosely organized team, ad-hoc communities consisting

of contributors from all over the world who seldom if ever meet face-

to-face, and who share a strong sense of commitment[1].

 The basic principle for the OSS Development Process (OSSDP) is

that by sharing source code, developers cooperate under a model of

systematic peer-review, and take advantage of parallel debugging

that leads to innovation and rapid advancement [2].

1.2 Problem Definition
 There are many claims associated with open source software

which are either misleading or simply false this makes it difficult to

really appreciate and exploit the potential of open source software.

3

 However the development processes of these software which are

clearly a decentralized approach have many features which could

benefit the entire software development processes [3], Furthermore it

is appear that the decentralized approach have been followed as a

template but each FOSS project apply it is own specific activities and

phases. We need to propose FOSS framework that summarized the

best practices, activities , contributors and phases of FOSS projects

based on some successfully OSS projects taking up some

considerations, in order to gain the potential advantages such as

productivity (rapid advancement on testing process and bugs fixing),

cheapest software, high quality software, innovation and

dissemination of knowledge around the world.

1.3 Research Objectives
The objectives of research include:

1. To review activities and phases of OSS projects development

and to summarize the best practices. Then to show how OSS

project management possible without regularly employed and

scheduled software development staff, or without an explicit

regime for software engineering project management, why

software developers will participate in OSSD projects?

2. To Design and propose a framework for FOSS Development that

capture the best practices derived from the first objective.

3. To validate the proposed FOSS framework with one of the

existing OSS framework.

1.4 Importance of the Research
 The significance of this research dealt with open source software

as one of the modern software trends, trying to take advantages of

4

patterns used to develop this type of programs as one of the

methods that can be applied in software development process, in

terms of sharing source code, developers cooperate under a model of

systematic peer-review, parallel debugging that leads to innovation

and rapid advancement.

1.5 Research Limitations
 The limitations of this research will be for some designing a

management FOSS framework based on the best practices applied in

successful OSS project such as Linux, Apache, etc. It aims to identify what

to do with little bit explanation telling how to do, working as a boundary that could be

used to develop FOSS project within.

1.6 Research Methodology
 The research methodology follows the descriptive approach by

surveying presentation of OSS project nature, OSS development

processes and practices based on some findings extracted from

some previous studies that described these projects and provide a

comparison between the suggested FOSS framework and Mozilla

framework in order to validate it.

1.7 Research Organization
The research has six chapters; the first one is the introduction

that gives background about the problem, objective of the thesis and

its scope. The literature review is divided in two chapters free and

open source software projects nature and free and open source

software development processes. Chapter four discusses the

traditional software life cycle models and proposes a framework to

5

develop FOSS projects. Chapter five presents a case study of Mozilla

web browser as a successful OSS project with attention to catch the

similarities between Mozilla framework and the suggested FOSS

framework. Chapter six denotes conclusions, recommendations and

future work.

Chapter Two
6

Free and Open Source

Software Projects Nature

2.1 Introduction
 It is frequent to make a distinction between the terms ‘free

software’ and ‘open source software’. Free software refers not to

price but to liberty to modify and redistribute source code. The Free

Software Foundation [4], founded by Richard Stallman, advocates the

use of its GNU General Public License (GPL) as a copyright license

which creates and promotes freedom. He writes “to understand the

concept, you should think of free speech, not free beer” [5]. The term

‘open source’ was coined by a group of people concerned that the

term ‘free software’ was anathema to businesses, this was resulted

in the creation of the Open Source Initiative (OSI) [6]. We use the

acronym FOSS for both movements for the sake of simplicity and

because both movements share most of their practical goals and

7

follow similar development processes. The OSI definition includes the

following criteria [7]:

• Free redistribution:

The license shall not restrict any party from selling or giving away

the software as a component of an aggregate software distribution;

no royalty or fee is required for such sale.

• Source code availability: the program must include source

code.

• Ability of derived works: modifications and derived works are

allowed, not necessarily subject to the same license as the

original work.

• Integrity of author’s source code: derived works must carry

different names or version numbers than the original work.

• No discrimination against persons or groups or fields of

endeavor.

• Distribution of license: no need of any additional license.

• License must not be specific to a product and must not restrict

other software.

GNU GPL, BSD, Apache, MPL (Mozilla) and Artistic (Perl) licenses are

all examples of licenses that conform OSI definition [7].

Another distinction can be drawn between OSS projects that

result from the initiative of a given individual or group of individuals,

and OSS projects that are supported by, or organized within,

industrial software companies. The consequences are noticeable in

the way these projects are managed (e.g. composition of the steering

committee, decision-making processes) and through the existence of

peripheral processes under the exclusive responsibility of the

company which backs the project (mainly quality insurance

processes).

8

Free and Open Source Software (FOSS) refers to software whose

licenses give users

Four essential ‘freedoms’:

• To run the program for any purpose.

• To study the workings of the program, and modify the program

to suit specific needs.

• To redistribute copies of the program at no charge or for a fee.

• To improve the program, and release the improved, modified

version [8].

OSS projects can also be classified into communities of interest,

centered about the production of software for different application

domains, such as games, Internet infrastructure, software system

design, astronomy, etc. This factor has a low impact on how the

software is produced [9].

FOSS users do not pay royalties as no copyright exists, in contrast to

proprietary software applications which are strictly protected through

patents and intellectual property rights [10].

2.2 Free Software Foundation (FSF)
In January 1984 one of the original MIT AI Labs hackers, Richard

M. Stallman, quit his job at MIT and founded Free Software

Foundation (FSF). He objected to the increasing commercialization of

university software research [4]. Stallman feared that despite the fact

that popular Unix standards like Sun's were broadly distributed, they

still remained under private ownership and would be used for

proprietary advantage, which is what happened by the early 1990s.

Stallman's goal was to develop software for anyone to use at no

cost, thereby implicitly helping software research. He started by

9

designing a Unix-compatible operating system, GNU. The name GNU

was chosen following a hacker tradition, as a recursive acronym for

GNU's Not Unix [10]. He chose to make the system compatible with

UNIX so that it would be portable, and so that UNIX users could easily

switch to it. But in fact that he did not success as well because the

GNU operating system was delayed, and the work started with a C

compiler and the editor GNU Emacs. Also, commercial UNIX systems

were still expensive, and no one got the source code anyway.

2.3 Open Source Initiative (OSI)
The Open Source Initiative (OSI) is a California public benefit

corporation, it is an organization founded in 1998 by Eric S. Raymond

to promote open source software and development strategies. The

OSI are the stewards of the Open Source Definition (OSD) and the

community-recognized body for reviewing and approving licenses as

OSD-conformant [4].

 Eric Raymond wanted to find a way to promote the free software

ideas (essentially because he wasn't happy with Microsoft), but he

was also concerned that the alternative Free Software Foundation's

strong political anti business message was keeping the world at large

from really appreciating the power of free software.

The OSI is actively involved in Open Source community-building

and education. OSI Board members frequently travel the world to

attend Open Source conferences and events, meet with open source

developers and users, and to discuss with executives from the public

and private sectors about how Open Source technologies, licenses,

and models of development can provide economic and strategic

advantages [7].

10

http://www.opensource.org/board
http://www.opensource.org/docs/osd

2.3.1 FOSSD Investors

There are many corporations started early adopting and investing in

such FOSS projects [8]:

• Large corporations/enterprises:

– IBM-Eclipse, Sun-NetBeans, Sun-OpenOffice, HP-Gelato,

Apple-Darwin, Microsoft Research-Rotor, etc.

– Barclays Global Investors, DKW, Merrill Lynch, etc.

– DoD, DoE, NSF, NIH, NASA, etc.

– MIT, Stanford, CMU, UC, UMichigan, etc.

• Mid-size corporations:

– RedHat, Novell, Borland

• Small (start-up) companies:

– ActiveState, Collab.Net, Jabber, Ximian, JBoss, Compiere,

etc.

2.3.2 A Successful Story of Linux
Linux project could be seen as a great try to face the

commercialization and monopolistic path in the software industry,

started by Linus Torvalds, the history of Linux started by the summer

of 1990 when Linus Torvalds, a student of technology at the

University of Helsingfors in Finland, started hacking on an embryo to

an Intel 386 Unix system as a hobby project. After a few months he

had successfully written a working kernel [5]. Although there was still

much to be done, the project drew the attention of curious

programmers when Torvalds announced it to a newsgroup on the

Internet.

In October 1991 he released the source code for the first ten

people to download Linux, It was the beginning of what became a

global hack, involving millions of lines of code contributed by

11

thousands of programmers [5]. It was the beginning of one of the

most spectacular software developments ever seen. Many also

regard Linux as the best brand of UNIX. Linux represents the

philosophy of UNIX— simplicity, portability, and openness. It is the

most widely ported system available today, and the only system

gaining market share besides Microsoft Windows NT.

The immediate interest was due to the fact that the entire source

code was available for free download to anyone who was interested

in using and modifying the system. By releasing the source code for

free at a very early stage and also updating the releases often,

Torvalds quickly found help, support, and feedback from other

programmers. Even as the first official version was released in 1994,

changes were being made on a daily and weekly basis while Linux

continued to mature into a powerful and versatile operating system.

A small development team did not develop Linux in the traditional

way of both commercial software development and freeware like

GNU. Linux was developed by a huge number of volunteers

coordinated through the Internet by a project leader. Quality was

maintained by the extremely simple technique of releasing

frequently and getting feedback from many users [4].

2.4 Problems with Traditional Development

Software Projects
Proponents of open source argue that ‘traditional’ software

development projects suffer from various ills. Such projects have

been shown to be prone to time and cost overruns, are largely

unmaintainable, with questionable quality and reliability [10].

These failures are ascribed to:

12

• Inadequate understanding of the size and complexity of IS

development projects coupled with inflexible, unrealistic

timeframes and poor cost estimates.

• Lack of user involvement.

• Shortfalls in skilled personnel: Team members with insufficient

technical expertise, managerial skill or knowledge about the

problem domain can affect project success.

• Project costs are further exacerbated by the price of license

fees for software and tools required for application

development as well as add-on costs for exchange controls.

2.5 Benefits of FOSS
Does OSS have answers to these problems? It is claimed that

OSSD produces reliable, high quality software in less time and with

less cost than traditional methods. In addition that OSSD is the “most

efficient” way to build applications. OSSD can potentially “change,

perhaps dramatically, the way humans work together to solve

complex problems in computer programming”.

Eric Raymond published that OSSD follow a “bazaar style” which

is a loosely centralized, cooperative community where collaboration

and sharing enjoy religion status. Conversely, traditional software

engineering seems to follow a “cathedral style” where hierarchical

structures exist and little collaboration takes place.

Furthermore if we look at the main features of many FOSS models we

find that its:

• Collaborative, parallel development involving source code

sharing and reuse.

• Collaborative approach to problem solving through constant

feedback and peer review.

13

• Large pool of globally dispersed, highly talented, motivated

professionals.

• Extremely rapid release times.

• Increased user involvement as users are viewed as co-

developers [10] .

The following part will show that OSS approach add some valued

features and cover some areas of defects that may found in the

traditional software including:

2.5.1 Quality Software

It is maintained that OSS features result in quality software as

collaborative development allows for multiple solutions. At the same

time there is little tolerance for failure to adhere to the tacitly

accepted norms [11].

2.5.2 Development Speed

Reuse of code implies speedier development: the more people

there are creating code and adding value to a project, the quicker

the product is released and becomes valuable to a user group [10]

2.5.3 User Involvement

Users are treated as a valued asset in the development process.

Viewing users as co developers leads to code improvement and

effective debugging. If encouraged, users can assist developers in

finding system faults and improvements, thereby reducing the need

(and cost) for extra developers to perform the same function [10].

2.5.4 Access to Existing Code

Developers have access to the “open source toolset”, a huge

amount of open source project code which can improve the

developer's skills and experience, so that can speed up development.

14

2.5.5 Collaboration

A further important feature of the FOSSD model is the nature of

the development community. Large numbers of geographically

dispersed programmers are joined by the internet to produce

complex software; they do so largely without pay.

2.5.6 Cost

Total cost of ownership (TCO) of FOSS is widely debated, a basic

tenet of free open source is that all source code is free and available

to any user to modify and improve. In some phases of ownership,

there is evidence that FOSS may have advantages in the area of

TCO. OSS can be tested without cost. OSS has no license fees,

removing the necessity to purchase additional licenses as the

organization grows [7].

15

Chapter Three

FOSS Development Processes

(FOSSD)

3.1 Introduction
This chapter explores patterns and processes that emerge in free

open source software development (FOSSD) projects with results

16

from recent studies of FOSSD. FOSSD is a relatively new way for

building and deploying large software systems on a global basis, and

differs in many interesting ways from the principles and practices

traditionally advocated for software engineering. Hundreds of FOSS

systems are now in use by thousands to millions of end-users, and

some of these FOSS systems entail hundreds-of-thousands to millions

of lines of source code [8]. So what’s going on here, and how are

FOSSD processes that are being used to build and sustain these

projects different, and how might process modeling and simulation

techniques be used to explore what’s new or different?.

One of the more significant features of FOSSD is the formation

and enactment of complex software development processes

performed by loosely coordinated software developers and

contributors [12]. These people may volunteer their time and skill to

such effort, and may only work at their personal discretion rather

than as assigned and scheduled. Further, these developers generally

provide their own computing resources, and bring their own software

development tools with them. Similarly, FOSS developers work on

software projects that do not typically have a corporate owner or

management staff to organize, direct, monitor, and improve the

software development processes being put into practice on such

projects.

There are many kinds of key questions that may be addressed in this

section such:

• How are successful FOSSD projects and processes possible

without regularly employed and scheduled software

development staff, or without an explicit regime for software

engineering project management?

• Why will software developers participate in FOSSD projects?

• Why and how are large FOSSD projects sustained?

17

• How are large FOSSD projects coordinated, controlled or

managed without a traditional project management team?

Why and how might these answers to these questions change over

time? These are the kinds of questions that will be addressed in this

section.

3.2 FOSS Development Processes (FOSSD)
Unlike the software engineering world, FOSS development

communities don’t seem to readily adopt modern software

engineering processes. FOSS communities develop software that’s

extremely valuable, generally reliable, globally distributed, made

available for acquisition at little or no cost, and readily used in its

associated community [12].

 FOSSD is not “software engineering” [13]:

• Different: FOSSD can be faster, better, and cheaper than SE in

some circumstances as we will see later in this section.

• FOSSD teams use 10-50 OSSD tools and communications

applications to support their development work while traditional

SE team does not need such number of tool and communication

support.

The next section will introduce example of some FOSSD practices,

furthermore, it appears that these processes occur concurrently,

rather than strictly ordered as in a traditional life-cycle model or

partially ordered as in a spiral process model seen in the next

chapter.

3.2.1 Requirements Analysis and Specification

Software requirements analysis helps to identify the problems

that a software system should address and the form solutions might

18

take. It is identifies an initial mapping of problems to system-based

solutions [13].

Generally FOSS Requirements/Designs could be described as follow:

• Not explicit.

• Not formal.

• Embedded within “FOSSD informalisms” Example FOSS

informalisms to follow (as email lists, project Web site,

discussion forums, etc).

• FOSS Requirements/Design processes is different from their SE

counterparts.

FOSS requirements take the form of threaded messages or

discussions on Web sites that are available for open review,

elaboration, refutation, or refinement [6].

They routinely emerge as a by-product of community discourse

about what its software should or shouldn’t do and who’ll take

responsibility for contributing new or modified system functionality,

Figure 3.1 shows the main features of OSS game that have been

added and which needed. It is appear after assertions in private and

public email discussion threads, ad-hoc software artifacts (such as

source code fragments included in a message), and site content

updates that continually emerge.

More conventionally, requirements analysis, specification, and

validation aren’t performed as a necessary task that produces a

mandated requirements deliverable.

Instead, you find widespread practices that imply reading and sense-

making of online content.

In short, requirements take these forms because FOSS developers

implement their systems and then assert that certain features are

necessary. They don’t result from the explicitly stated needs of user

representatives, focus groups, or product marketing strategists.

19

20

Figure 3.1: Computer game software requirements [14]

This figure explain how developers firstly determine the

suggested feature for their software and exchange ideas about the

suitable and better requirements after they assert in private and

public discussion until reach this final template for the requirements.

Figure 3.1: Computer game software requirements [15]

3.2.2 Coordinated Version Control, System Build,
and Staged Incremental Release

Software version control tools such as the Concurrent Versions

System CVS serve as both a centralized mechanism for coordinating

FOSS development and a venue for mediating control over which

software enhancements, extensions, or upgrades will be checked in

(inserted) to the archive [16]. If checked in, these updates will be

available to the community as part of the alpha, beta, candidate, or

official released versions, as well as the daily-build release, figure 3.2

shows one such a FOSS repository on the Web of a software source

code files.

This coordination is necessary because decentralized code

contributors and reviewers might independently contribute software

updates or reviews that overlap, conflict, or generate unwanted side

effects.

Each project team or CVS repository administrator must decide what

can be checked in and who can and can’t check in new or modified

software source code content. Some projects make these policies

explicit through a voting scheme [17].

21

Figure 3.2: A view into a Web-accessible CVS (Concurrent Versions System)

configuration archive of software source code files for the game [18].

3.2.3 Maintenance as Evolutionary Redevelopment,

Reinvention and Revitalization

In FOSS development community's maintenance is generally

viewed as the major activity associated with a software system

across its life cycle [13]. However, the traditional label of software

maintenance doesn’t quite fit what you see occurring in different

FOSS communities.

22

Instead, it might be better to characterize the overall evolutionary

dynamic of FOSS as reinvention. Reinvention enables continuous

improvement and occurs through sharing, examining, modifying, and

redistributing concepts and techniques that have appeared in closed-

source systems, research and textbook publications, conferences,

and developer-user discourse across multiple FOSS projects.

FOSS systems seem to evolve through minor improvements or

mutations that are expressed, recombined, and redistributed across

many releases with short life cycles. FOSS end users who act as

developers or maintainers continually produce these mutations that

appear initially in daily system builds.
19

3.2.4 Project Management and Career Development

FOSSD projects self-organize as a pyramid via virtual project

management, VPM requires people to act in leadership roles based

on skill, availability, and belief in project community [13]

FOSS development teams can take the organizational form of

interlinked layered operating as a dynamically organized but loosely

coupled virtual enterprise. A layered is a hierarchical organizational

form that centralizes and concentrates certain kinds of authority,

trust, and respect for experience and accomplishment within the

team as show in Figure 3.3. However, it doesn’t imply a single

authority, because decision-making can be shared among core

developers who act as peers at the top echelon.

Figure 3.3 a pyramid and role hierarchy for FOSSD images from [20].

Instead, when layer operates as a virtual enterprise, it relies on

virtual project management to mobilize, coordinate, control, build

23

and assure the quality of FOSS development activities. It could invite

or encourage system contributors to come forward and take a

shared, individual responsibility that’ll serve to benefit the FOSS

collective of user-developers.

VPM requires several people to act as team leader, subsystem

manager, or system module owner in either a short- or long-term

manner. People take roles on the basis of their skill,

accomplishments, availability, and belief in community development.

Figure 3.4 shows an example of VPM.

24

Figure 3.4 a description of how a FOSS computer game development project organizes

and manages itself. [21].

25

3.2.5 Software Technology Transfer

FOSS technology transfer from existing Web sites to

organizational practice is a community and project team building

process, Not (yet) an engineering process.

It’s instead a socio technical process that entails the development of

constructive social relationships. Informally it is a negotiated social

agreement and a routine willingness to search, browse, download,

and try out FOSS assets [13]. Although the Software technology

transfer is an important process but it seems often to be a neglected

process in the academic software engineering community [19].

FOSS developers publicize and share their project assets by adopting

and using FOSS project Web sites as a community wide practice,

they build these Web sites using OSS content management systems

(such as PhP-Nuke) and serve them using OSS Web servers (Apache),

database systems (MySQL). User and developers are increasingly

accessing these sites via OSS Web browsers (Mozilla).

FOSS systems, development assets, tools, and project Web sites

serve as a venue for socializing, building relationships and trust,

sharing, and learning with others. Some open source software

projects have made developing such social relationships their

primary project goal.

Generally free and open source software development practices

give rise to a new view of how complex software systems can be

constructed, deployed, and evolved without adhering to traditional

software engineering life-cycle principles [13]. Because they rely on

electronic communication media, virtual project management, and

version management mechanisms to coordinate globally dispersed

development efforts. So we can say that these FOSS processes and

practices offer new directions for developing complex software

systems.

26

3.3 Results from Recent Studies of OSSD
There are two kinds of studies that offer some insight or findings

on OSSD practices each in turn reflects on different kinds of

processes which are not well understood at this time. First, there are

trade studies that focus on convenience surveys of software or IT

industry professionals who are early adopters of OSS techniques.

Second, there are systematic empirical studies of OSSD projects

using small/large research samples and analytical methods drawn

from different academic disciplines.

3.3.1 Trade/Industry Studies

Among the more widely identified industry studies are those that

have been sponsored and published by CIO magazine

(www.cio.com), starting back in 2005. These studies of the opinions

and experiences of hundreds of IT managers and executives in a

variety of enterprise settings report the following kinds of findings:

1. In these enterprises, OSSD projects are primarily targeted to

new system deployments, rather than to supporting or

replacing existing business system applications.

2. The primary benefits for engaging OSSD projects include

anticipation of lower total cost of ownership (TCO), lower capital

investment, and greater reliability of the resulting systems.

27

3. The perceived risks or weaknesses associated with in-house

OSSD projects include lack of in-house OSSD skills or OSS

developers in the market and uncertainty over the costs of

switching from current approaches and vendors to OSS oriented

ones.

From the perspective of software process modeling and simulation,

the following kinds of observations appear:

1. The costs associated with OSSD projects are unclear, as are the

methods for accounting for them and associating them with

different OSSD processes or activities.

2. If the surveys participants work in enterprises that explicitly

manage their traditional software development processes, they

recognize that OSSD projects seem to require different, less

familiar processes that may not be well understood by their

current software development staff.

3.3.2 Findings from OSSD Research Studies

Rather than attempt to survey the complete universe of studies in

these collections, the choice instead is to just briefly sample a small

set of studies that raise interesting issues or challenging problems

for software process modeling and simulation. Furthermore, it is

important to recognize that OSSD is no silver bullet that resolves the

software crisis. Instead it is fair to recognize that most of the nearly

100,000 OSSD projects associated with Web portals like

SourceForce.org have very small teams of two or less developers [22],

and many projects are inactive or have yet to release any operational

software. However, there are now at least a few thousand OSSD

projects that are viable and ongoing, so that there is a sufficient

universe of diverse OSSD projects to investigate, and to model and

28

simulate their software processes, we will show some of these finding

in term of:

3.3.2.1 Motivating, joining, participating, and contributing

to OSSD projects:

One of the most common questions about OSSD projects is why

software developers will join and participate in such efforts, often

without pay for sustained periods of time. A number of surveys of

OSS developers have posed such questions, and the findings reveal

the following.

1. OSS developers generally find the greatest benefit from

participation is the opportunity to learn and share what they

know about software system functionality, design, methods,

tools, and practices associated with specific projects or

community leaders.

2. OSS developers appear to really enjoy their OSSD work [23],

and to be recognized as trustworthy and reputable contributors

[24].

3. OSS developers also self-select the technical roles they will

take on as part of their participation in a project [25], rather

than be assigned to role in a traditionally managed SE project,

where the assigned role may not be to their liking.

3.3.2.2 Alliance formation and inter-project social

networking:

Gathering of individual OSS developers give rise to a more

persistent project team or self-sustaining community. These software

developers find and connect with each other through OSSD Web sites

and online discourse (e.g., threaded email discussions) [26], and they

29

find they share many technical competencies, values, and beliefs in

common [21,27]. Becoming a central node in a social network of

software developers that interconnects multiple OSS projects is also

a way to accumulate social capital and recognition from peers.

Thus interesting problems arise when investigating how best to

model or simulate the processes of alliance formation and inter-

project social networking, and how such processes facilitate or

constrain OSSD activities, tool usage, and preference for which

development artifacts are most valued by project participants.

Figure 3.5: a social network that links 24 developers in five projects through two key

developers into a larger OSS project community [22]

30

Chapter Four

31

Life Cycle Models and the

Proposed FOSS Framework

4.1 Introduction

As in any other engineering discipline, software engineering also

has some structured models for software development. This chapter

was divided into three sections the first will provide a generic

overview about different software development methodologies, the

second section specified to the existing FOSSD models and the third

section is a proposition of a framework for the FOSS software

development.

4.2. Software Development Life Cycle (SDLC)

 A software life cycle model depicts the significant phases or

activities of a software project from conception until the product is

retired. It specifies the relationships between project phases,

32

including transition criteria, feedback mechanisms, milestones,

baselines, reviews, and deliverables. Typically, a life cycle model

addresses the phases of a software project: requirements phase,

design phase, implementation, integration, testing, operations and

maintenance

 Software life cycle models describe the interrelationships between

software development phases. The common life cycle models are:

4.2.1 Waterfall Model

 The least flexible of the life cycle models, also known as Classic

Life Cycle Model (or) Linear Sequential Model (or) Waterfall Method.

Still it is well suited to projects which have a well defined architecture

and established user interface and performance requirements. The

waterfall model does work for certain problem domains, not ably

those where the requirements are not well understood [28].

The standard waterfall model for systems development is an

approach that goes through the following steps (activities) [29]:

1. Document System Concept

2. Identify System Requirements and Analyze Them

3. Break the System into Pieces (Architectural Design)

4. Design Each Piece (Detailed Design)

5. Code the System Components and Test Them Individually

(Coding, Debugging, and Unit Testing)

6. Integrate the Pieces and Test the System (System Testing)

7. Deploy the System and Operate It

This model is widely used on large government systems; particularly

by the Department of Defense (DOD).The standard waterfall model is

associated with the failure or cancellation of a number of large

systems, it can also be very expensive [29]. As a result, the software

33

http://www.softpanorama.org/SE/software_life_cycle_models.shtml#Waterfall%20Model

development community has experimented with a number of

alternative approaches including [27]:

• Spiral Design (Go through waterfalls, starting with a very rough

notion of the system and becoming more detailed over time)

• Modified Waterfalls (Waterfalls with Overlapping Phases;

Waterfall with Subprojects)

• Evolutionary Prototyping (Start with initial concept, design and

implement an initial prototype, iterate as needed through

prototype refinement until acceptable, complete and release

the acceptable prototype)

• Staged Delivery (Go through Concept, Requirements Analysis,

and Architectural Design - then implement the pieces, showing

them to the customer as the components are completed - and

go back to the previous steps if needed)

• Evolutionary Delivery (a cross between Evolutionary

Prototyping and Staged Delivery)

4.2.1.1 Advantages of Waterfall Model

1. Clear project objectives.

2. Stable project requirements.

3. Progress of system is measurable.

4. Strict sign-off requirements.

4.2.1.2 Disadvantages of Waterfall Model

1. Time consuming

2. Never backward (Traditional) between phases.

3. Little room for iteration.

4. Difficulty responding to changes in the requirements. [45]

34

4.2.2 Prototyping Model

 It was advocated by Brooks in early 60th, Useful in situations where

requirements and user's needs are unclear or poorly specified. The

approach is to construct a quick and dirty partial implementation of

the system during or before the requirements phase because many

aspects of the system are unclear until a working prototype is

developed. Typical implementation language is scripting language

and UNIX shell (due to availability huge amount of components that

can be used for construction of the prototype) [27].

 Prototyping consists of developing a partial implementation of the

system to give the users a feel for what the developer has in mind.

The users then give feedback on what they think of the prototype -

what works and what doesn’t - and the developer can make changes

more easily and efficiently than if the changes were to be made later

on in development.

4.2.2.1 Advantages of Prototype Model

1. User interaction available in during development cycle of

prototype.

2. Missing functionality can be identified easily.

3. Confusing or difficult functions can be identified.

4. Helps to refine the potential risks associated with the delivery of

the system being developed

5. Helps to deliver the product in quality easily.

6. Environment to resolve unclear objectives, various aspects can be

tested and quicker feedback can be got from the user.

7. Encourages innovation and flexible designs.

35

http://www.softpanorama.org/Bookshelf/Classic/tmmm.shtml

4.2.2.2 Disadvantages of Prototype Model
1. Contract may be awarded without rigorous evaluation of

Prototype.

2. Identifying non-functional elements difficult to document.

3. Incomplete application may cause application not to be used as

the

full system was designed.

4. Incomplete or inadequate problem analysis.

5. Client may be unknowledgeable.

6. Approval process and requirement is not strict, structure of system

can be damaged since many changes could be made.

7. Over long periods, can cause loss in consumer interest and

subsequent cancellation due to a lack of a market (for commercial

products).

8. Not suitable for large applications. [46]

4.2.3 Spiral Model

 A better model, the "spiral model" was suggested by Boehm in

1985; the spiral model provides useful insights into the life cycle of

the system. It could be considered as a generalization of the

prototyping model [30]. That why it is usually implemented as a

variant of prototyping model with the first iteration being a

prototype. But it also supposes unlimited resources for the

project, No organization can perform more then a couple iterations

during the initial development of the system, the first iteration is

usually called prototype as shown in Figure 4.1 Spiral model phases.

 The Spiral model of development is risk-oriented; each spiral

addresses a set of major risks that have been identified, Figure 4.2

provide detailed view of spiral model phases. Each spiral consists of:

determining objectives, alternatives, and constraints, identifying and

36

resolving risks, evaluating alternatives, developing deliverables,

planning the next iteration, and committing to an approach to the

next iteration [29].

Figure 4.1: Spiral model phases

37

Figure 4.2: Detailed Spiral model phases [29]

4.2.3.1 Advantages of Spiral Model

1. Avoidance of Risk is enhanced.

2. Supports for dynamically changing requirements.

3. Strong approval and documentation control.

4. Implementation has priority over functionality.

5. Additional Functionality can be added at a later date.

4.2.3.2 Disadvantages of Spiral Model

1. Highly customized limiting re-usability.

2. Applied differently for each application.

3. Risk of not meeting budget or schedule.

4. Requires expertise in risk evaluation and reduction

Complex, relatively difficult to follow strictly. [29]

4.2.4 Evolutionary Prototyping Model

 This is kind of mix of Waterfall model and prototyping. Might be

suitable in projects where the main problem is user interface

requirements, but internal architecture is relatively well established

and static. It is Cost effective (Development costs reduced better

than others models) and combine both features of Waterfall model

and Prototyping [46].

38

4.3 Recent Software Process Challenges
There are many challenges that facing software development

process, however we find that OSS approach cover some of these

areas in its development practices such as how to maintain global software

development, easily process improvement because OSSD processes often

iterate daily versus infrequent singular software life cycle engineering events which

could make it easier to improve, but still yet there are no solid

solutions to face these challenges such as process improvement,

here we will summarize some of these challenges that facing both:

Distributed, decentralized, and/or global software development

4.3.1 Process Improvement

Process improvement is a series of actions taken by a Process

Owner to identify, analyze and improve existing processes within an

organization to meet new goals and objectives [13]. These actions

often follow a specific methodology or strategy to create successful

results. Samplings of these are listed below:

1. Benchmarking.

2. Business Process Improvement.

3. Business process reengineering.

4. Capability Maturity Model Integration/Capability Maturity

Model.

5. Goal-Question-Metric.

Challenges facing software development process:

39

• Process design optimization or redesign

• Continuous process improvement (learning)

4.3.2 Process Discovery

Related to process mining is a set of techniques that

automatically construct a representation of an organization’s current

business processes and its major process variations in order to

extract what type of processes events, conditions, timestamps, and

other meta-data from software development artifacts.

4.4 OSS Development Models
 There are several basic differences between OSSD and traditional

methods. Firstly, OSS systems are built by large numbers of people,

largely volunteers. Secondly, work is not assigned; rather individuals

choose to participate in specific project activities. Thirdly, there is no

clear design process, at either a system or detailed level [31]. In

addition, there is no explicit project plan, list of deliverables or

schedule; all these differences suggest a weakening of traditional

process models to be applied in OSS development.

 Each OSS project has several processes and practices which have

been followed and varied from each other based on the issues

considered to developed it, this variation of the practices depend on

the corporation developed the OSS products [32].

4.4.1 OSSD Project Characteristics

There are many features that characterize OSSD when it compared

wit the traditional software development TSD [32]:

• OSS Developers are always users of what they build, while OSS users (>1%)

are also OSS developers, where TSD differentiate between them only small or a

limited team responsible of development activities.

40

http://en.wikipedia.org/wiki/Process_mining

• OSS requires “critical mass” of contributors and OSS components connected

through socio-technical interaction networks to maintain a distributed

development where not a compulsory issue in TSD is.

• OSSD teams use 10-50 OSSD tools to support their development work, which

also not required in TSD.

•

4.4.2 Best Practices

There are some best practices that must be considered when trying to handle successful

FOSS projects [33]:

• Processes with explicit process models are easier to manage, analyze, improve,

distribute, and reuse.

• New/ reliable software tools and techniques are best candidates for software

process support.

• OSSD is a community building process

− not just a technical development process

− FOSS peer review creates a community of peers

• OSSD processes often iterate daily versus infrequent singular (milestone)

Software Life Cycle Engineering events

− OSSD: frequent, rapid cycle time (easier to improve) vs.

− SLC: infrequent, slow cycle time (harder to improve)

• Process management and improvement have been one of the most enduring

practices in Software Engineering for improving productivity and quality, and to

reducing cost and risks.

4.5 Existing OSS Development Models
 Several researchers have proposed life cycle models derived from analyses of

successful open source projects, the opinions differ as to the stages that comprise a

41

typical open source development project. However the OSSD paradigm demonstrates

several common attributes [8]:

• Parallel development and peer review.

• Prompt feedback to user and developer contributions.

• Highly talented developers.

• Parallel debugging.

• User involvement rapid release times.

The coming part will describe existing OSS models that categorized to three types of

models.

4.5.1 Comparative Model

 This model have been suggested by Patrick Vixie in 1999 when he discussed that

classic OSS projects such as BSD, BIND and SendMail are evidence of open source

projects utilize standard software engineering processes of analysis, design,

implementation and support [32], which mean that an open source project can include

all the elements of a traditional SDLC.

However, in his comparison between OSSD and the traditional SDLC, Vixie

recognizes the fundamental differences that the OSS life cycle present such as code

sharing and accessing, distributed code contribution and reviewing that often may

appear in SDLC, but fails to suggest an appropriate model that analyses this new

process.

4.5.2 Organizational Models

42

 Schweik and Semenov in 2003 proposed an OSSD project life cycle comprising

three phases: project initiation, going ‘open’, and project growth stability or decline.

Each phase is characterized by a distinct set of activities.

Project initiation show that developers decide to take on projects for a variety of

reasons; also it is premised on modularity, such that future development is organized

around small manageable pieces. The advantages are: multiple programmers can work

on the same module; competition for the best solution code increases quality; and there

is greater control over project progress [33]

Going ‘open’ involves a choice on the part of the project founders to follow OSS

licensing principles. In this phase appropriate technologies and web sites need to be

chosen to act as a vehicle for sharing code and recruiting developers.

The final phase, growth stability or decline, poses an element of risk for open source

projects: will the project generate enough interest to attract developers and users

globally to use the product and participate in further programming, testing or

documentation [7].

4.5.3 Task-related Models

 Several researchers have derived life cycle models from investigating successful

open source projects such as Apache and the FreeBSD Project; one of those researches

is Mockus who described a life cycle that combines a decision-making framework with

task-related project phases.

 Niels Jorgensen has suggested a model that provides a more detailed description of

specific product related activities that underpin the OSSD process. The below figure

explains the life cycle for changes that occurred within the FreeBSD project.

43

Figure 4.3: Jorgensen life-cycle [34]

There are several stages or sets of activities are proposed:

Code: Code is submitted by talented developers for review and improvement by

respected peers.

Review: Most (if not all) code contributions are reviewed, this independent peer

review is a central strength of the OSSD process.

Pre-commit test: Review is followed by an unplanned, yet thorough, testing of all

contributions for a particular code change.

Development release: If the code segment is deemed release-ready it may be added

into the development release.

Parallel debugging: Development releases of software perform a rigorous debugging

phase where any number of developers is able to scrutinize the code in search of flaws.

Production release: Where development versions are deemed stable, they are released

as production versions.

 Jorgensen’s model is widely accepted [35;11] as a framework for the OSSD process,

on both macro (project) and micro (component or code segment) levels.

However, when applied to an OSS project, the model does not adequately explain

where or how the processes of planning, analysis and design take place.

44

4.6 Proposed Framework
The proposed FOSS project development framework tends to identify the main

steps that could be followed to adopt or handle such kind of projects working as a

management framework; it takes into account the best practices that must be followed

when trying to handle successful FOSS projects. It aims to identify what to do with

little bit explanation telling how to do, working as a boundary that could be used to

develop FOSS project within. Figure 4.5 explain the interactions involve within FOSS

framework, generally the framework consists of two parts; OSS activities that may be

45

applied and FOSS framework actors. However, each OSS project can follow special

development framework based on number of factors such as the vendor goals, the

functionality, acceptance of the project itself (popularity reflect on the number of the

developers who could participate), sponsors, technical issues, etc.

The suggested framework have been inspired from Sun Microsystems OSS

development strategies of (NetBeens-OpenOffice) as partial work to meet the needs of

developing FOSS software in order to fit the needs of adopting such project by firstly

funded organizations or groups of individual developers who has sponsor.

4.6.1 Framework Objectives

The framework has several objectives aims to satisfy, including:

1. Identify what to do rather than telling how to do.

2. Encourage the adoption of FOSS projects.

3. Increase the productivity of the developers.

4. Facilitating testing process and bugs fixing.

5. Provide cheapest software and high quality software.

4.6.2 FOSS Framework Considerations

The suggested FOSS development framework corresponding to the most OSS

development frameworks which are basically based on two considerations:

1. Distributed development work that performed on a completely volunteers

developers environments as a social interactions between community members

with some restriction control panel to ensure the success.

2. Preparing suitable technical infrastructure and providing communication tools

such as web site, mailing lists, version control, bug tracking and real time chat

to support the accessing, communicating, maintaining, Assigning and

performing development work.

46

4.6.3 FOSS Framework Activities

1. As introduced before the framework consists from two parts; OSS activities that

may be applied and the framework actors who could participate in such

development, the framework provides a description of major product related

activities as a template to start such development with ability to handle more

miner specific activities assigned later during development which make it easily

to adapt it., here are major activities that must be performed on such project

after preparing the suitable technical infrastructure which is standard set of tools

for managing information:

2. Write up a clear mission statement.

3. Choose a good name.

4. Identify the features and requirements list of the new projects.

5. Project announcements.

6. Provide a development status page, listing the project's near-

term goals and needs.

7. Assigning and performing development work.

8. Preparing downloads.

9. Choosing a license and applying it.

10. Reviewing code, testing and releasing.

11. Inspections.

12. Managing Releases.

13. Packaging.

Practically, there are more steps that could be added, or each step of those above

includes a set of sub steps and activities.

As indicated preparing the suitable technical infrastructure is the basic assumption

which all the development work is stand on, standard set of tools for managing

information such as:

47

http://producingoss.com/en/testing-and-releasing.html

Web site: Primarily a centralized, one-way channel of information from the project out

to the public. The web site may also serve as an administrative interface for other

project tools.

Mailing lists: Usually the most active communications forum in the project.

Version control: Enables developers to manage code changes conveniently, including

reverting and "change porting". Enables everyone to watch what's happening to the

code.

Bug tracking: Enables developers to keep track of what they're working on,

coordinate with each other, and plan releases. Enables everyone to query the status of

bugs and record information about particular bugs. Also can be used for tracking not

only bugs, but also tasks, releases, new features, etc.

Real-time chat: A place for quick, lightweight discussions and question/answer

exchanges. Not always archived completely.

Each tool in those may have a distinct need, but their functions are also

interrelated, and the tools must be made to work together, the next part will discuss the

framework actors who are simply the people who contribute in project development

and must cooperate with each other to satisfy their goal; developing a successfully

FOSS project.

4.6.4 Framework Actors

The FOSS framework actors consist of nine collaborative elements (participants)

as seen in figure 4.5 each participant work as standalone element on specific domain to

avoid the roles interference:

• The Board.

• Community Manager.

• Users.

• Developers and Contributors.

48

• Quality Insurance Team.

• Release Manager.

• Maintainer.

• Site Administrator.

• CVS Manager.

To adopt such framework by large organizations or corporations it may be better to

start the development work by those suggested roles as paid staff members responsible

from managing other volunteer contributors and act as leaders of each part of the

project. In case of adopting by small group of individuals it may be better to combine

some roles together to reduce the total number of needed staff members because these

projects will be developed by a self motivated developers with no large fund or sponsor

who are simply small team, thereby it may be better to combine the board and the

Community manger in one role; combing the Quality Insurance Team and the

Maintainers in one role; combing the Release Manager and the CVS Managers in one

role. However it will cause an extra overhead of each resulted role’s responsibilities

and expected conflict, to avoid such situation the basic assumption of the framework is

to start working with all those roles.

4.6.5 Roles and Responsibilities

Each participant work as stand alone domain and has some activities to perform

and share common tools with the other participants, here we will describe how actually

the work must be done and what kind of roles to be played of each participant as

follow:

4.6.5.1 The Board

The Board is always are free open source project's idea representative mainly their

focus is to ensure that the project community is being run in a fair and open manner

and make decisions for the community, on high level.

4.6.5.2 Community Manager

49

 He is the person who shares the knowledge with the other participants and ensures

that all community issues are addressed (respond to tech issues, unanswered questions)

the community manager must be the most expertise person in the development team.

Community manager cooperate with other contributors to maintain a roadmap

document that specifies what will be included in future releases, as well as dates for

which releases are scheduled. Also he determines content and timing, but goes to

considerable to ensure that the development community is able to comment on and

participate in these decisions.

4.6.5.3 Users

The FOSS users play the important role on such projects development, viewing

users as co developers leads to code improvement and effective

debugging because their comment and feedback reflect "what is going on the

project" and "what can be done to resolve the project problems," so if encouraged,

users can assist developers in finding system faults and

improvements, thereby reducing the need (and cost) for extra

developers to perform the same function. They always download and use

free software, later on could be developers.

4.6.5.4 Site Administrator

 Each FOSS project must have a web site which is the place for representing the

organization or the group related issues, a web site manager is responsible from

managing the website content (news, updates, etc) to ensure the site remains up-to-date

and deploy builds.

4.6.5.5 Maintainer

The maintainer is the person who responsible from maintaining a project/ module,

manages a group of developers, deciding features for the project, merge patches/bug

fixes and create module web page.

50

4.6.5.6 CVS Manager

Each project provides an output at every time of adding new improvement as

product releases, CVS manager or Concurrent Versions System manager is a

person that who is responsible of managing, configuring, grant access and maintains

CVS.

4.6.5.7 Developers

A developer is a person that contributes to community by selecting feature to

develop, bug to fix, download, and commit code. A talent developer always meets the

time constraints for the release and responds effectively to new ideas.

4.6.5.8 Release Manager

Release Manager starts new release phase by release proposal, release updates,

branch for current release, release post mortem, review release candidates and decide

final release, also must propose schedule/plan for the project.

 The releases of any FOSS product are best illustrated by a tree of release branches

with many branches where each major branch represents a major version; minor

versions are represented by branches of the major branches.

51

Figure 4.4: Releases Tree

In the following release tree, arrows that follow one-another in a particular direction

represent a branch. Boxes with full lines and diamonds represent official releases.

Boxes with dotted lines represent the development branch at that time. Security

branches are represented by ovals.

4.6.5.9 Quality Assurance Team

Produce quality - builds and ensure quality of the software by downloading

development builds and test to release Q-builds. Having a public forum for reporting

problems and actually getting users and developer feedback on them is one of the most

important advantages that identify the whole quality assurance process.

The main activities quality assurance are testing and bug fixing, there are many

testing activities could be performed: ad-hoc volunteer testing, partial tests (not as

complete as full functional tests) and full tests.

The suggested testing plan has two of testing types:

• Prerelease Testing

Performing a daily build, and runs a daily minimal “partial test” on the build, in order

to ensure the build is sufficiently stable to allow development work on it to proceed.

• Inspections

Maintaining full test before releasing any version by both QA team (full) and Ad hoc

volunteer contributors (partial).

52

Figure 4.5: FOSS Framework

53

Here is the proposed framework diagram designed as Use Case diagram, in software

engineering, a Use Case diagram in the Unified Modelling Language (UML), is a type

of static structure diagram that describes sequence of actions.

Figure 4.6: FOSS Framework

54

Chapter Five

Case Study of Mozilla Web
Browser

55

5.1 Introduction
The Mozilla project is an Open Source Software (OSS) project which is dedicated

to developing the Mozilla web browser suite. Since its creation in 1998, the project has

attracted thousands of participants, and has arguably one of the largest communities

working on an OSS project today [36].

Although its main product is the browser, the Mozilla Project has a number of related

subprojects. The browser is developed using a set of open technologies which compose

the Mozilla application framework, a platform-independent suite of languages and

libraries, these technologies include:

• XUL, The XML User Interface Language, a cross-platform user interface

description language

• XBL, the eXtensible Binding Language, a language used to modify the behavior

of elements in documents

• JavaScript, an ECMA-standardized language for scripting Web applications

• Gecko, Mozilla’s cross-platform, embeddable layout engine

5.1.1 Mozilla Organization and Community

The Mozilla Organization (mozilla.org) is a group which exists to support the

development of the browser suite. Mozilla.org is responsible for managing, planning

and providing server resources to support the development of Mozilla.

The organization is composed of selected people from the community who act as

managers and technical lead for the various Mozilla projects. Each member of the

organization is responsible for a Mozilla-related task, including Web site maintenance,

documentation, architecture design and release engineering. There are currently 14

people listed as mozilla.org staff from a number of different organizations, including

Netscape and Redhat [37].

56

Mozilla.org is charged with leadership for the Mozilla project, but it is important to

realize that the actual work is performed by a large number of people who are not

necessarily part of the organization itself, which are identified simply as the Mozilla

community. The community consists of volunteers, paid contributors and mozilla.org

staff.

5.1.2 Unique Aspects of Mozilla Project

Although the number of active OSS projects today is quite large [38], the Mozilla

Project is an interesting target for OSS research for a number of reasons:

• The Mozilla codebase is one of the largest and fastest moving among OSS

projects, its size is comparable to the Linux kernel.

• The original Netscape Navigator 5 codebase was donated by Netscape to

mozilla.org [39], so there was a significant amount of pre-existing code at the

time the Open Source project was officially started.

• The number of developers is high[35], many of them being directly paid by

Netscape, OEone, Sun, IBM and other companies that fund development of the

browser suite and framework.

July Aug Sep Oct Nov Dec Jan Feb(inco

mplete)
Developers

submitting code

143 160 152 157 158 150 159 104

New developers

submitting code

2 11 7 5 16 5 12 1

Total code

submissions

1577 1892 1997 2355 2348 1594 2083 466

Table 5.1: Statistics for source code submission from July 2002 to February

2003[35].

57

• The Mozilla Project aims to create a polished, easy-to-use application for end-

users of widely varying computer skills, whereas the majority of OSS projects

concentrate on applications where the developer is also a domain expert.

5.2 Aspects of Mozilla Software Process
The work started on Mozilla in March 1998, using the original codebases which

was donated by Netscape Communications. Because of this many of the requirements

had been determined by the original code and documentation developed by Netscape

[40].

However, the technical lead of mozilla.org came to the somewhat controversial

conclusion that the original codebase would prove impossible to evolve to suit the

requirements of a standards-compliant Web browser. Some code modules were

completely rewritten – such as the layout engine, which needed to be thoroughly

changed to support the new technologies.

5.2.1 Modularity and Module Ownership

 The Mozilla browser is developed using the Mozilla application framework, one of

the characteristics of the design of this framework is that it is highly componentized [41]

due to the use of a cross-platform component library called XPCOM [42]. This design is

by nature modular, and parts such as the Javascript engine, the runtime libraries, and

the framework itself can be reused independently of the browser to develop other

products. The high modularity also permits developers to concentrate on areas of the

code without needing to understand the entire architecture; also it allows for a gradual

learning curve, which is important for project newcomers.

The product is broken down into directories /layout, /mailnews, and so on. Files

required to build a browser and mail reader are distributed among them (so that each

one has an owner)

 Most code modules in Mozilla have one or more associated components in the

Bugzilla bug tracking tool. Each Bugzilla component has an owner, which is the

default assignee for new issues reported, and a Quality Assurance contact.

58

5.2.2 “Bug-driven” Development

 In the Mozilla Project the term bug is used to refer to any filed request for

modification (MR) in the software, as a feedback of an actual defect, an enhancement,

or a change in functionality. All change requests and their associated implementations

have a unique number which identifies them in the Bugzilla problem tracking system.

 Anyone can report bugs or request enhancements, the bug reporting and

enhancement request process uses the Bugzilla problem-reporting tool, and requires

requesters to set up an account on the system. Bugzilla also has tools that allow the bug

reporter to see the most recent bugs, and if desired, to search the entire database of

problem reports. Potential bug reporters are directed to use these tools to avoid

duplicate bug reports.

Each bug is created with a state of UNCONFIRMED or NEW (depending on the

experience the reporter is credited with). The task of actually confirming bugs by

reproducing them rests on the volunteers who perform bug triage(fixing), which is one

of the quality assurance activities in Mozilla.

5.2.3 Requirements

 Often a controversial aspect of OSS projects [43], the requirements process in

Mozilla is also somewhat not clear because it was started by Netscape 5 features. High-

level requirements are laid down by mozilla.org management, but since these are few

and very abstract.

Most of the decisions on functionality inclusion and change are discussed piecemeal by

the community and module owners through bug and newsgroup comments, a message

thread is started on a public newsgroup, regarding a change in functionality. Other

people will usually comment on relevance and discuss advantages and disadvantages.

It is hard to say that the requirements process is generally inadequate: the

community has active participation in the adoption of proposed features, and anyone is

free to implement a desired change and submit it for approval. So the module owners

and mozilla.org staff are the final authorities for determining and approving these

changes (level of control that the Mozilla process requires).

59

5.2.4 Design

The actual process of designing the Mozilla software architecture is difficult to

abstract because of two important issues: first, the design inherits in part from original

Netscape experience, so it was not completely invented in public view; second,

because design discussions are inherently difficult to capture and usually have sparse

record[44].

According to Mike Shaver and Dan Mosedale, an engineer for Netscape, the original

Mozilla design was a direct evolution of the Netscape Navigator 5 architecture.

5.2.5 Distributed Development and Formal Reviews

One of the premises the Mozilla Project was based upon was that face-to-face

communication should not be required for development, which is strictly the rule for

most, if not all, OSS projects[45]. Thus all code would have to be designed,

implemented, tested and integrated without relying on personal contact to solve

problems, this poses many difficult situations and requires planning and support tools.

All developers work using revision control (CVS) on a common, centralized, codebase,

which allows changes to be developed concurrently and independently. There is a

single image of the code, and at any time any developer can easily retrieve the “tip”,

which is the latest version of the Mozilla source

Mozilla uses tools such as Bonsai and Tinderbox tools to provide a way to query in real

time the status of the repository, and the most recent changes.

The review process works as follows: a developer working on a change for a bug

produces a patch, which is a generated text file which describes the line-by-line

differences made between the developer’s local version and the latest version in the

code repository. This patch is then attached to a bug in the Bugzilla system, and the

developer requests review. A reviewer, which can be the module owner or anyone else

familiar with the code, will then read the code critically and either grant review or ask

for changes.

60

5.3 Issues Related To Mozilla Framework
Mozilla framework is a decision-making framework with task-related project

phases but failing to explore how analysis and design phases start from the beginning

because these phases inherits in part from original Netscape experience, so it was not

completely invented in public view.

As we discussed that Mozilla is currently operated by the mozilla.org staff (14

members) that coordinate and guide the project, provide process, and engage in some

coding. Only about 4 of the core members spend a significant part of their time writing

code for the browser application. Others have roles dedicated to such things as

community QA, milestone releases, Web site tools and maintenance, and tools such as

Bugzilla that assist developers.

Mozilla .org concentrates on the following areas as phases to develop their browser:

• Roles and Responsibilities.

• Identifying work to be done.

• Assigning and Performing Development Work.

• Prerelease Testing.

• Inspections.

• Managing Releases.

5.4 Mozilla vs FOSS Framework
In order to evaluate the suggested FOSS framework a comparison done between

the two frameworks that show the major similarities and differences between them in

term of conceptual factors, furthermore the entire OSS frameworks seems to be similar

on most of the development work practices with differences of how to manage the

work and organize the team.

5.4.1 Actors and Roles
The Mozilla.org staff member currently consist from 14 people who distributed

between deferent assigned roles as we discussed that in section 5.1.1, 5.3.1 there is a

board who act as managers and technical lead for the various Mozilla projects,

61

responsible from ensuring that the project community is being run in a fair and open

manner and make decisions for the community, on high level which is typically as we

described in the suggested framework.

Also there is web site administrator who is responsible from managing the website

content, release manager who is responsible from release engineering activities, QA

Team who are responsible from ensuring the product quality.

 However the Mozilla.org staff member is not specifically conform the suggested

hierarchy because it is base on the actual work responsibilities, some tasks performed

by hired staff from other corporation, here we see that our hierarchy identified nine key

roles depending on self motivated staff members work as a team and distribute the

roles responsibilities between them.

Another point discussed that the actual work is performed by a large number of

people who are not necessarily part of the organization itself, which could be identified

simply as the project community. This community consists of volunteers and paid

contributors as we did in the suggested framework with some attentions to excite great

numbers of participants because we considered completely full FOSS criteria on

developing, distributing and integrations.

5.4.2 Quality Assurance
 Quality assurance activities performed by different classes of people, ranging from

QA engineers and volunteers for both frameworks with some differences on the way to

perform each test level strategies.

The main activities QA in both frameworks considered several levels of quality as test

plans:

• Prerelease Testing.

• Inspections

Mozilla have a term to refer for partial test called smoke test (not as complete as full

functional tests)

62

5.4.3 Similarities and Differences

Similarities Mozilla Framework FOSS Framework
Face-to-face

Communication

Not required Not required

Distributed Environment Exists Exists
of Key Roles 9 9
Communication Tools Yes Yes
Quality Assurance Phases Prerelease Testing.

Inspections

Prerelease Testing.

Inspections
Modularity and Modules

Ownership

Yes Yes

Category a decision-making

framework with task-related

project phases

a decision-making

framework with task-

related project phases
Major OSS Development

steps

Yes Yes

Mission statement

Identify the features and requirements

Project announcements.

Reviewing code

Testing

Inspections

Releasing

Packaging

Differences

Operability Large corporation and

organizations fund in OSS

Small organizations and

groups of individuals

with their sponsor

63

Quality Assurance Levels Two Levels

 (Smoke Test – Full Test)

Three Levels (Partial-Ad

hoc- Full Test)
Releases Small pieces of upgrades Full Software updates or

complete new version
Requirements Partial View Public view

Design Partial View Public view

Project Management Mozilla Staff Leads the

entire development

Virtual Project

Management (VPM)
Abstraction level high detailed level of it’s

steps

Low detailed level of

it’s steps
Development Projects OSS FOSS

License Mozilla Project License

(MPL)

General Public License

(GPL)

5.4.4 Findings

So it will be clear that the suggested FOSS framework has the following features which

could make it better in developing such kind of projects.

• The framework was designed to meet the needs of small groups and

organization that adopting FOSS projects with ability to be adopted in the

commercial environments to produce products with fee charge, it's

hierarchical structures allow adding new sponsor or investors at the

top of the hierarchy.

• The framework takes into account developing completely FOSS as

primary objective, which will help to satisfy the other framework

objectives because when considering completely full FOSS criteria on

developing, distributing and integrations you will gain increasable

growing fast community which increase the productivity of the

developers and facilitate the testing process and bugs

fixing.

• Each participant work as stand alone element on specific domain to avoid

the roles interference.

64

• The Framework Identify key roles with clear role responsibilities which

make it more powerful.

• Mozilla framework didn't separate between the maintainers and testers

related tasks each one of them could perform a testing plan which could

affect the quality assurance consistency, in contrast with FOSS

framework we find that quality assurance activities done by specified

team who is responsible from the entire testing plan, no conflicts with

maintainer's responsibilities which is bounded with just bugs fixing

activities and other related tasks.

• FOSS framework provide three Quality Assurance levels partial, full test

levels that performed by maintainers and ad hoc volunteer test which

could make it more accurate when it compared with Mozilla framework

that provide only two levels of test.

• Mozilla framework is a decision-making framework with task-related

project phases but failing to explore how analysis and design phases start

from the beginning because these phases inherits in part from original

Netscape experience, so it was not completely invented in public view,

where the FOSS framework is also a decision-making framework with

task-related project phases with a clear defined analysis and design

phases because it’s invented for public view.

• FOSS Framework tend to be more flexible when it provides a description

of major product related activities as a template to start such development

with ability to handle miner specific activities assigned later during

development which make it easily to adapt it.

65

Chapter Six
Conclusion and Recommendations

for Future Works

66

6.1 Conclusion
Free and Open Source Software or FOSS offers the world of software industry

much better things dispersing from concepts, methods, techniques, etc. when it

compared with the proprietary software applications which are strictly

protected through patents and intellectual property rights

This research has issues of concerns; provide of the main issues and facts about free

and open source software projects nature and open source software

development processes. The basic principle for the OSS development process

(OSSDP) is that by sharing source code, developers cooperate under a model of

systematic peer-review, and take advantage of parallel debugging that leads to

innovation and rapid advancement.

The proposed FOSS framework which consists of two parts; OSS activities

that may be applied and FOSS framework actors summarized the best

practices of developing OSS projects based on some successfully OSS

projects which could be followed to develop FOSS projects by small

organizations and groups of individuals. Then we present a case

study of Mozilla Web browser as a successful OSS project with

attention to catch the similarities and differences between Mozilla

framework and the suggested FOSS framework in order to provide a

validation of proposed framework.

67

6.2 Recommendations for Future Works

Practically, FOSS framework provides a low detailed level of the

entire FOSS project development steps, there are more steps that

could be added, or each step of those mentioned could include a set

of sub steps and activities it is recommended to provide details of

those sub steps and their associated activities.

In order to evaluate the proposed FOSS framework a comparison done between the

two frameworks that show major similarities and differences between them in term of

conceptual factors, furthermore Mozilla framework seems to be similar to FOSS

framework in different areas, it recommended to make a validation with other different

existing frameworks such as apache web server .

Future researches could validate and evaluate the FOSS

framework with ability to enhance or adding new part.

 Another suggestion is that studies must be done to compare

between FOSS Projects and property software project in term of

adoption overhead is it better to adopt FOSS project in the

developing countries or continue buying and using property software.

68

69

70

71

72

6.3 References

73

1[] E.E. Kim, “An Introduction to Open Source Communities, Blue Oxen Associates, Technical report,”
2003.

2[] Hansen, H.,R., and Janko, W, Wirtschafts, “Results from Software Engineering Research into Open
Source Development Projects, ” university, Austria, 2000.

3[] A. W. Brown, and G. Booch, “Reusing Open-Source Software and Practices: The Impact of Open-
Source on Commercial Vendors,” Springer- Verlag, 2002.

4[] Cary Sullivan, “Managing Open Source Projects,” 2001.

5[] Eric S. Raymond, “The Cathedral & the Bazaar,” O'Reilly. ISBN 1-56592-724-9, 1999.
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/, [viewed on May 2009].
6

[] Walt Scacchi, “When Is Free/Open Source Software Development Faster, Better, and Cheaper than
Software Engineering," Institute for Software Research University of California, 2006.

7[] Open Source Initiative website, http://www.OSI.org , [viewed on July 2009].

8[] Rinette Roets, Mary Lou Minnaar, Kerry Wright, “Open Source: Towards Successful Systems
Development Projects in Developing Countries,” University of Fort Hare, 2006.
9

[] Walt Scacchi, Free and Open Source Development Practices in the Game Community,”University of
California, Irvine, 2005.

10[] Asiri, S, “Open source software,” Computers and Society, 2003.

11[] FLOSS Project Report, Free/Libre and open source software: Survey and study, 2004.

12[] Walt Scacchi, “Opportunities and Challenges for Modeling and Simulating Free/Open Source
Software Processes,” Institute for Software Research University of California, 2004.

13[] W. Scacchi, “Understanding the Requirements for Developing Open Source Software Systems,”
2000.

14[] http://www.starcraft2.com , [viewed on Oct 2009].

15[] http://www. bnetd.org , [viewed on July 2009].

16[] K. Fogel, “Open Source Development with CVS,” Coriolis Press, 1999.

17[] R.T. Fielding, “Shared Leadership in the Apache Project,” Comm. ACM, vol. 42, 1999.
18[] http://www.quakeforge.net , [viewed on Aug 2009].

19[] http://www.mame.net , [viewed on Aug 2009].

20[] A.J. Kim, Community-Building on the Web: Secret Strategies for Successful Online Communities,
Peachpit Press, 2000.
21

http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://www.mame.net/
http://www.quakeforge.net/
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/
http://en.wikipedia.org/wiki/Special:BookSources/1565927249

[] http://www.PlaneShift.it , [viewed on Aug 2009].
22

[] Madey, G., Freeh, V., and Tynan, R., “Modeling the F/OSS Community: A Quantative Investigation,
in S. Koch (ed.),”Hershey, PA, 2004.
23

[] Hertel, G., Neidner, S., and Hermann, S., “Motivation of software developers in Open Source
projects: an Internet-based survey of contributors to the Linux kernel, Research Policy,” July 2003.
24

[] Stewart, K.J. and Gosain, S. , “ An Exploratory Study of Ideology and Trust in Open Source
Development Groups, Proc. 22nd Intern. Conf. Information Systems,New Orleans, LA. 2001.
25

[] Ye, Y. & Kishida, K., “Towards an understanding of the motivation of open source software
developers,”Portland, OR, IEEE Computer Society, May 2003.
26

[] Monge, P.R., Fulk, J., Kalman, M.E., Flanagin, A.J., Parnassa, C., and Rumsey, S., “Production of
Collective Action in Alliance-Based Interorganizational Communication and Information Systems,”
Organization Science, 1998.
27

[] Espinosa, J. A., Kraut, R.E., Slaughter, S. A., Lerch, J. F., Herbsleb, J. D., Mockus, “ A shared
Mental Models, Familiarity, and Coordination: A Multi-method Study of Distributed Software Teams,”
Barcelona, Spain, December 2002.

28[] http://www.softpanorama.org/SE/software_life_cycle_models.shtml , [viewed on September 2009].
29

[] McConnell, “Rapid Development, Microsoft Press,”1996.
30

[] A Spiral Model of Software Development and Enhancement May 1988.

31[] P.Vixie, “Open sources: Voices from the open source revolution,” California, 1999.

32[] Walt Scacchi, “Process and Open Source Software,” Institute for Software Research, October 2008.

33[] Schweik, C. M., & Semenov, The institutional design of open source programming: Implications
for addressing complex public policy and management problems, 2003.

34[] Jorgensen, “Putting it all in the trunk: Incremental software development in the FreeBSD open
source project,” Information Systems Journal, 2001.
35

[] Feller, J., & Fitzgerald, “Understanding open source software development,” London: Addison-
Wesley, 2001.

36[] The Mozilla Organization. mozilla.org at a glance,http://www.mozilla.org/ mozorg.html, [viewed
on Oct 2009]..
37

[] The Mozilla Organization. mozilla.org Staff Members, http://www.mozilla.org/about/stafflist.html,
[viewed on Oct 2009].

38[] Freshmeat.net. Statistics and Top 20, http://freshmeat.net/stats , [viewed on Aug 2009].

http://freshmeat.net/stats
http://www.mozilla/
http://www.mozilla.org/
http://www.softpanorama.org/SE/software_life_cycle_models.shtml
http://www.PlaneShift.it/

39[] Frank Hecker. Mozilla at One. 1999, http://mozilla.org/mozilla at-one.html , [viewed on Oct 2009]..

40[] The Mozilla Organization. Documentation Graveyard, http://www.mozilla.org/classic/, [viewed on
Oct 2009].

41[] Surveys of user and developer participation in the project to gather general satisfaction and
perceived problems with relation to the Mozilla, http://www.mozilla.org, [viewed on Oct 2009].

42[] The Mozilla Organization. XPCOM. 2001, http://www.mozilla.org/projects/xpcom , [viewed on
Oct 2009].
43

[] Lisa GR Henderson., “Requirements Elicitation in Open-Source Programs,”.2000.

44[] Thomas R. Gruber and Daniel M. Russell, “Design Knowledge and Design Rationale: A
Framework for Representation,” Knowledge Systems Laboratory, Stanford University, 1990.
45

[] Audris Mockus., “Roy Fielding, and James Herbsleb., June 2000.
[45] Linton, J., “Process Mapping and Design: ebruari 2007.
[46] www.Wikipedia.org, [viewed on Nov 2009].

http://www.Wikipedia.org/
http://www.mozilla.org/projects/xpcom
http://www.mozilla.org/
http://www.mozilla.org/classic/
http://mozilla.org/mozilla%20at-one.html

	4.1 Introduction
	4.2. Software Development Life Cycle (SDLC)
	5.1 Introduction
	5.2 Aspects of Mozilla Software Process
	5.3 Issues Related To Mozilla Framework
	5.4 Mozilla vs FOSS Framework
	6.1 Conclusion

