Seed Yielding Ability
of Some Faba Beans (Vicia faba L.)
Cultivars Grown in Malakal

A Thesis Submitted to the Sudan University of Science and Technology
in Fulfillment of the Requirements for the Degree of Master of
Science (M.Sc.) (Agronomy)

By
OLWAY AWOK TUT
Bachelor of Science (Honours) Agronomy
1979
Alexandria University
(Egypt)

Supervised by:
Dr. AHMED ALI MOHAMED OSMAN

DEPARTMENT OF AGRONOMY
COLLEGE OF AGRICULTURAL STUDIES
Dedication
Mother, Athow Ajobong Akoldung

Acknowledgements

I wish to express my most sincere appreciation and gratitude to Dr. Ahmed Ali for his continuous inspiration, invaluable suggestions, help, guidance and supervision of this work; my thanks to Dr. Salah O. Ahmed for serving as assistant supervisor.

I am very grateful to Gamal El Khier, Hudeiba Agricultural Research Station, Damar, for providing faba bean seed material.

And many thanks are due to James O. Amajok and Samuel B. Koryom for their help in field operations, to Ismail Ibrahim for laboratory work and to Salah M. Osman for
computer work-data analyses and typing of the manuscript.

I am very thankful to the State Ministry of Agriculture, Upper Nile State for using her facilities, and to Upper Nile University for financial support.

And lastly but not least I very much acknowledge the cooperation and friendliness shown by Sudan University of Science and Technology staff.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>Abstract</td>
<td>viii</td>
</tr>
<tr>
<td>Abstract in Arabic</td>
<td>ix</td>
</tr>
</tbody>
</table>

CHAPTER ONE

1. Introduction 1

CHAPTER TWO

2. Review of Literature 9

 2.1.1 General description 9

2.1.2 Botanical description 9
2.1.3 Optimum planting time 10
2.1.4 Climatical requirements 11
2.2 Vegetative and Reproductive growth 11
2.2.1 Factors affecting reproductive components 13
2.2.1.1 Temperature effects on reproductive components 13
2.2.1.3 Flower shedding effect on reproductive components 13
2.2.1.3 Water supply effects on reproductive components 14
2.2.1.4 Sowing date effects on reproductive components 14
2.2.1.5 Plant height effect on reproductive components 16
2.2.1.6 Genotypic factors affect reproductive components 16
2.2.1.7 Dry matter production affects the reproductive Components

2.2.1.8 Seed setting affects the reproductive components

2.3 Yield and yield components

CHAPTER THREE

3. Materials and Methods
 3.1 Site description
 3.2 Land preparation
 3.3 Treatments and layout
 3.4 Characters studied
CHAPTER FOUR

4. Results \hspace{1cm} 24

CHAPTER FIVE

5.1 Discussion \hspace{1cm} 38
5.2 Summary and Conclusion \hspace{1cm} 42

References \hspace{1cm} 44

Appendices \hspace{1cm} 65

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a.</td>
<td>World faba bean supply and disposition</td>
</tr>
<tr>
<td>1b.</td>
<td>World faba bean exports and imports</td>
</tr>
<tr>
<td>2a.</td>
<td>Meteorological data for three different faba bean producing locations in the Sudan for season 1981/82</td>
</tr>
<tr>
<td>2b.</td>
<td>Meteorological data for various faba bean production locations in the Sudan (1981/82 season) compared with Malakal area temperature during the winter seasons of 2004/05 and 2005/06</td>
</tr>
<tr>
<td>3.</td>
<td>Effects of water stress on field beans at Sonning Reading University Farm, England</td>
</tr>
<tr>
<td>4.</td>
<td>Meteorological data for Malakal for two experimenting Seasons</td>
</tr>
<tr>
<td>5.</td>
<td>Simple correlations among yield-related traits-season 2004/05 (above), 2005/06 (H-93 variety)</td>
</tr>
<tr>
<td>6.</td>
<td>Simple correlations among yield-related components-</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. (1a): Path coefficient analysis of H–93 variety (2004/05)</td>
<td>29</td>
</tr>
<tr>
<td>Fig. (2a): Path coefficient analysis of H–93 variety (2005/06)</td>
<td>30</td>
</tr>
<tr>
<td>Fig. (1b): Path coefficient analysis of BB–7 variety (2004/05)</td>
<td>32</td>
</tr>
<tr>
<td>Fig. (2b): Path coefficient analysis of BB–7 variety (2005/06)</td>
<td>33</td>
</tr>
<tr>
<td>Fig: (1c): Path coefficient analysis of Sm–L variety (2004/05)</td>
<td>36</td>
</tr>
<tr>
<td>Fig: (2c): Path coefficient analysis of Sm–L variety (2005/06)</td>
<td>37</td>
</tr>
</tbody>
</table>

ABSTRACT

In a two-year study to investigate seed yielding-ability of faba bean (*Vicia faba* L.) grown in Malakal, 90 plants from three faba bean cultivars were characterized for yield and yield-related components on a replicated single plant basis.

Significant simple correlations were obtained between seed yield and number of podded nodes, number of pods and number of seeds per plant.

Path coefficient analyses indicated that total dry matter production, seed weight and number of pods per plant were important in determining yield structure in Malakal.
Statistical interpretation showed that number of pods and total dry matter production adequately described yield potential of Malakal grown faba beans.

Yield and yield related components values were very low because of short winter seasons.