قال تعالى:

{ وَفُلِ اعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِنُونَ وَسَيُرَدُّونَ إِلَى عَالِمِ الْغَيْبِ وَالْسَّهَادَةِ فَيُبَنِّيْنَكُمْ بِمَا كُنتُمْ تَعْمَلُونَ }

صدق الله العظيم

سورة النبوة الآية 105
Dedication

To All We Love

&

Cherish
Acknowledgment

First of all thanks for Allah that giving me the power and will to complete this study.

I would like to express my sincerest and thanks to my supervisor Dr. Tariq Elfatih Elmisbah for his close supervision, advice and endless guide.

I wish to express Acknowledgment the help provided by the staff of Albuluk, Omdurman and Khartoum Paediatric Hospitals for their help and support.

Thanks are extended to my brother Abu Algassim, my sister Afaf and my cusion Faiza Hassan for their help and support.
Abstract

This was descriptive and cross-sectional study was carried out in Khartoum state during the period from November 2008 to January 2009.

The study was designed to determine the pattern of inheritance of sickle cell anemia in parents of patients who referred to three hospital of Khartoum State.

Hundred parents (50 mother and 50 father) were selected for this study, from Khartoum pediatric Hospitals, (2,5) ml of venous blood was taken from all parents and put it in an anticoagulant container. Complete blood count (CBC) was determined by use of Sysmex instrument N-50, and samples were investigated for HbS by use of sickling test. Hemoglobin electrophoresis was performed to determine the pattern of inheritance of sickle cell gene.

The results were as followed:

97% of samples were heterozygous form of Hb S (ββS) and the remaining were homozygous form of HbS (βSβS). 89% red cell morphology was normocytic normochromic cells, and the remaining were microcytic normo-hypochochromic cells. The means of count and cell indices in the carrier and diseased parents as follows respectively: the mean of white blood cells count(TLC) was $8.5 \times 10^9/l$ and $6.9 \times 10^9/l$, the mean of red blood cell count(RBC) was $4.6 \times 10^{12}/l$ and $3.9 \times 10^{12}/l$, the mean of hemoglobin(Hb) was $13g/dl$ and $9g/dl$, th mean of hematocrit(PCV) was 41.2% and 39.3%, the mean of mean cell volume (MCV) was 86.2 and $86.3fl$, the mean of mean cell hemoglobin(MCH) was $30pg$ and $29.1pg$ the mean of mean cell hemoglobin concentration (MCHC) was 31.2% (58%) and 31.3%, the mean of platelets count(PLT) was $207 \times 10^3/µl$ and $298 \times 10^3/µl$.

The highest frequency of sickle cell anemia was found in Messaria tribe (40%), followed by Bargo tribe (30%), Hausa and Rezaigat (8%), Taisha and Jawama (6%), and Zagawa (2%).
مستخلص الدراسة

اجريت هذه الدراسة الوصفيه التحليلية في ولاية الخرطوم في الفترة من نوفمبر 2008 حتى يناير 2009 وذلك لتحديد النمط الوراثي لإباء المرسمالمتردبين على ثلاثة مستشفيات بولاية الخرطوم، تم اختيار مانه من الأبوين (50 أب 50 أم) لإجراء هذه الدراسة، تم اخذ 2.5 مل من الدم في وعاء مانع للتجلط من كلا الأبوين، تم قياس صورة الدم الكامل باستعمال جهاز سيسكس وتم اختبار العينات لهيمقوليون S باستعمال الإختبار المنجلى، عمل الفصل الكهربائى للهيمقوليون لتحديد النمط الوراثي وكانت النتائج كالآتى:

97% من العينات كانت تحمل الشكل الغير منجانس لهيمقوليون S والبقية عبارة عن الشكل المجانس لهيمقوليون، 89% من شكل الخلايا الحمراء عبارة عن خلايا طبيعية اللون والحجم، والبقية عبارة عن خلايا طبيعية-قليلة اللون وطبيعية الحجم، وكان متوسطيات عدد ومعاملات الخلايا في الأمام الحاملين والمرضى على التوالي كالآتى: متوسط عدد كرات الدم البيضاء 4.6 × 10^12/لتر و 5.9 × 10^12/لتر و 8.9 × 10^12/لتر، ومتوسط الهيمقوليون 13 جرام % و 9 جرام %، ومتوسط الهيماتوكريت 41.2 % و 39.3 %، ومتوسط حجم الخلية 86.3 فيمنو/لتر و 83 فيمنو/لتر و 2.1 بيكو جرام و 2.91 بيكو جرام، ومتوسط تركز هيمقوليون الخلاة 31.2 % و 31.3 %، ومتوسط عدد الصفائح الدموية 207×10^3/ميكرولتر و 298×10^3.

إلى نكرار للانيميا المنجلية وجد في قبيلة المسيرة (40%) تعبتها قبيلة البرقو (30%) تعبتها الهوسا والرزيقات (8%) والتعابيشة والجوامعة (6%) والزغوة (2%).
Contents

Subject Page
Quran 1
Dedication 11
Acknowledgment 111
Abstract (in English) 1V
Abstract (in Arabic) V
Contents V1
List of tables X
List of Figures XI
List of plates XIII

Chapter one
Introduction and Literature review
1.1. General introduction. 1
1.1.1. Anaemia. 1
1.1.2. Evaluation and diagnosis. 2
21.1.3. Classification of anemia. 2
1.1.3.1. Etiological classification. 2
1.1.3.2. Morphological classification. 2
1.2. Normal hemoglobin. 3
1.2.1. Discovery. 3
1.2.2. Synthesis. 4
1.2.3. Structure. 4
1.2.4. Types. 6
1.3. The abnormal hemoglobin (hemoglobinopathy). 6
1.3.1. Genetics. 7
1.3.2. Nomenclature. 7
1.3.3. Classification. 8
1.3.4. Prevalence and geographical Distribution.
1.3.5. Pattern of inheritance.
1.3.6. Clinical features.
1.3.7. Variants.
1.3.8. HbC Disorder.
1.7.1.1. HbC Trait.
1.7.1.2. HbC Disease.
1.7.13. HbSC Disease.
1.7.1.4. Clinical Features.
1.7.1.5. Lab Findings.
1.3.7.2. HbD Disorder.
1.3.7.2.1. HbD Trait.
1.3.7.2.2. HbD Disease.
1.3.7.2.3. HbSD Disease.
1.3.7.3. HbE Trait.
1.3.7.3.1. HbE Disease.
1.3.8. Lab Findings.
1.2. Literature Review.
1.2.1. Sickling Disorders.
1.2.1.1. History.
1.2.1.2. HbS Prevalence and Geographical Distribution.
1.2.1.3. Nomenclature.
1.2.1.4. Pathophysiology.
1.2.1.5. Cellular Pathology.
1.2.1.6. Pathogenesis of Haemolysis.
1.2.1.7. Pathogenesis of Vaso-occlusion.
1.2.2. Sickle Cell Disease (SCD).
1.2.2.1 Inheritance.
1.2.2.2. Other factors influence SCD. 23
1.2.2.3. Clinical Features. 25
1.2.2.4. Lab Findings. 26
1.2.3. Sickle Cell Trait(SCT). 26
1.2.3.1. Clinical Feature. 29
1.2.3.2. Diagnosis. 29
1.2.4. Diagnosis of SCD&SCT. 30
Objectives 31

Chapter Two

Materials and Methods

2.1. Study design. 32
2.2. Study area. 32
2.3. Study population. 32
2.3.1. Inclusion criteria. 32
2.3. Exclusion criteria. 32
2.4. Methods. 32
2.4.1. Sample collection. 32
2.4.2. Methods used. 32
2.4.2.1. Complete blood count instrumentation method. 32
2.4.2.1.1. Instrument required. 32
2.4.2.1.2. Principle. 33
2.4.2.2. Sickling Test. 33
2.4.2.2.1. Principle. 33
2.4.2.2.2. Procedure. 33
2.4.2.3 Hb electrophoresis. 33
2.4.2.3.1. Principle. 33
2.4.2.3.2. Preparation of samples. 34
2.4.2.3.3. Material and methods. 34
2.4.2.3.4. Procedure. 34
2.4.2.3.5. Result. 35
2.4.2.3.5. Peripheral smear examination. 35
2.5. Data analysis. 35

Chapter Three
The results

The results 36

Chapter Four
Discussion

Discussion 51

Chapter Five
Conclusion and recommendations

Conclusion and Recommendations 53

Chapter six
References

References 54

Lists of tables

<table>
<thead>
<tr>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
</tr>
</tbody>
</table>

1-1. Classification of anemia based on red cell measurements. 3

1-2. Allelic and non allelic inheritance pattern in doubly Heterozygous individuals. 10
1-3. Common hemoglobinopathies.

3-1. Distribution of samples according to tribes.
3-2. Distribution of samples according to hospitals.
3-3. Frequency of samples according to sickling test.
3-4. Frequency of samples according to morphology of RBCs.
3-5. Distribution of patients according to residence.
3-6. Distribution of tribes according to Hb SS and Hb AS.

Lists of figures
1.1. Normal and sickled RBC.
1.2. Inheritance of sickle gene from parent with usual and trait.
1.3. Inheritance of sickle gene from parent with sickle trait.
1.4. Inheritance of sickle gene from parent with trait and anemia.
1.5. Inheritance of sickle gene from parent with usual and anemia.
1.6. Inheritance of hemoglobin gene from parent with sickle trait.
1.7. Inheritance of sickle gene from parent with sickle cell & thalassemia trait.
3.1. Distribution of samples according to tribes.
3.2. Distribution of samples according to hospitals.
3.3. Frequency of samples according to sickling test.
3.4. Frequency of samples according to morphology of RBCs.
3.5. Distribution of patients according to residence.
3.6. Mean of leucocyte count in the parent.
3.7. Mean of red blood cell count in the parent.
3.8. Mean of platelet count in the parent. 43

3.9. Mean of hemoglobin in the parent. 44

3.10. Mean of haematocrit (PCV) in the parent. 45

3.11. Mean of Mean Cell Volume (MCV) in the parent. 46

3.12. Mean of Mean Cell Hemoglobin (MCH) in the parent. 47

3.13. Mean of Mean Cell Hemoglobin Concentration (MCHC) in the parent. 48

List of Plates

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate.1. Sickle cell anemia, Peripheral blood film showing deeply</td>
<td>59</td>
</tr>
<tr>
<td>staining sickle cells, target cells and polychromasia (a howell-</td>
<td></td>
</tr>
<tr>
<td>jollybody is seen in a red cell in the top right portion of the field)</td>
<td></td>
</tr>
<tr>
<td>Plate.2. Homozygous Hb C disease, peripheral blood film showing many</td>
<td>60</td>
</tr>
<tr>
<td>target cells, and spherocytic cells.</td>
<td></td>
</tr>
<tr>
<td>Plate.3. Sickle cell anemia, painful swollen fingers (dactylitis)</td>
<td>61</td>
</tr>
<tr>
<td>Plate.4. Sickle cells anaemia, medial aspect of the ankle of a 15-year-old Nigerian boy showing necrosis and ulceration.</td>
<td>62</td>
</tr>
</tbody>
</table>