قال تعالى:

صدق الله العظيم

سورة العلق الآيات من (1-5)
Dedication

To the ones whom I care much for
To my parents
To the one who gave me faith, strength, pleasure
Love just by being there
To you
To the ones who contributed to my well being
To my colleagues
With love.
Acknowledgements

Great thanks and gratitude are forwarded to my main supervisor **Prof. Mohammed Talballa El-Sheikh** for his valuable advice and guidance through the various stages of this project, in planning, implementing and concluding the research. In the same vein thanks are extended to co-supervisor, **Dr. Abdelsalam Abdallah. Dafalla**, and without mincing of words as many thanks to **Dr. Hassan Abdurrahman. Fatah** of Khartoum University, Faculty of Chemical Engineering. Thanks are also extended to **Mr. Adel Ali** and **Mr. Tarig Abdelrahman** of Petrodar Company. Special thanks to **Mr. Omar Elbadawy** in Khartoum University’s Central Laborarory. Special thanks are extended to **Mr. Mohammed Ali Idris** and **Mr. Omar Babiker** of the Central Petroleum
Laboratories (C.P.L). Thanks are extended to whomever in wherever hereby contributed in the bringing up and in the completion of this research.

Thanks everybody.
Abstract
(English)

Zeolite samples were collected from Wadkawly in Gadarif region. These samples were characterized with respect to both physical and chemical properties. X-ray Diffraction Analysis (XRD) showed these samples to be composed of Thomsonite zeolite, exclusively. The samples were treated with strong brine solution to ensure that Na-zeolite is generated and used as the stationary ion exchange phase. Solutions containing 100ppm of the ions (Pb$^{2+}$ or Fe$^{3+}$ or Ni$^{2+}$) were artificially prepared, then processed with the zeolite. Excellent extraction was achieved, with final residual concentration of 0.02 ppb, 3.0 ppb and 1.38 ppm for (Pb$^{2+}$, Fe$^{3+}$ and Ni$^{2+}$) respectively. This gives extraction efficiency of ~ 100 %, 99.9 %, and 98.6 %, for Pb$^{2+}$, Fe$^{3+}$ and Ni$^{2+}$, respectively. The relative efficiency is, therefore:

$$\text{Pb}^{2+} > \text{Fe}^{3+} > \text{Ni}^{2+}.$$
الخلاصة

جمعت عينات من الزيوليت من ود كولي في منطقة القضارف. أجريت دراسة للخصائص الفيزيائية والكيميائية لهذه العينات. وقد بين التحليل بحيد الأشعة السينية أن هذه العينات تنتمي حصراً إلى فصيلة الزيوليت المعروفة "بالتمسوونيت". وجرت معالجة العينات بحلول الملح المركز للتأكد من أنتاج زبوليت الصوديوم (Na-Zeolite) الذي وظف كالطور الثابت في عملية التبادل الأيوني. وتم تحضير محاليل من الأيونات (Fe³⁺, Pb²⁺) ثم عولجت بالزيوليت. وجد أن استخلاص هذه الأيونات تحقق بدرجة ممتازة، معطياً تراكيز نهائية هي 0.02 جزء من مليون لـ Fe³⁺ و 0.02 جزء من مليون لـ Pb²⁺ و 3.0 جزء من مليون و 1.38 جزء من مليون للأيونات (Ni²⁺ و Pb²⁺) على التوالي. ويعطي هذا فعالية استخلاص ~100%, 98.6% و 99.9% للأيونات (Ni²⁺ و Pb²⁺) على التوالي. ومن ثم فإن الفعالية النسبية للاستخلاص هي:

\[\text{Pb}^{2+} > \text{Fe}^{3+} > \text{Ni}^{2+} \]
List of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>الياة</td>
<td>i</td>
</tr>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract (English)</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract (Arabic)</td>
<td>v</td>
</tr>
<tr>
<td>List of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>x</td>
</tr>
</tbody>
</table>

Chapter I

Introduction

1. Introduction | 1 |
1.1 Justification | 1 |
1.2 Specific Objectives | 2 |
1.3 Work plan | 2 |

Chapter II

Literature Review

2. Literature Review | 4 |
2.1 Surface water | 4 |
2.2 Ground water | 5 |
2.3 Water purification | 6 |
2.3.1 Chemical coagulants | 7 |
2.3.2 Filtration | 8 |
2.3.3 Disinfection of water | 8 |
2.4 Ion Exchange | 9 |
2.4.1 General | 9 |
2.4.2 Heavy-metal ions | 11 |
2.4.3 Removing of Heavy-metal ions by Zeolites | 12 |
2.5 Zeolites | 13 |
2.5.1 Composition | 13 |
2.5.2 Structure | 14 |
2.5.3 Classification | 19 |
2.5.4 Properties | 22 |
2.5.5 Applications | 25 |
2.5.6 Regenerations | 27 |
2.5.7 Modifications | 27 |
2.6 Zeolites in water treatment | 28 |

Chapter III

Experimental (Materials and Methods)
3. Experimental (Materials and Methods) 30

3.1 Materials 30

- **3.1.1** Samples of Zeolites deposits 30
- **3.1.2** Samples of Well water 30

3.2 Equipments 30

- **3.2.1** X-Ray diffractometer 30
- **3.2.2** Scanning Electro-microscopy 30
- **3.2.3** Atomic Absorption spectrophotometer 30
- **3.2.4** The glass equipments 31

3.3 Procedures 31

- **3.3.1** Zeolites deposits characterization 31
 - **3.3.1.1** Physical characterization of sample 31
 - **3.3.1.2** Chemical characteristics of sample 31
- **3.3.2** X-Ray Diffractometry procedure 32
- **3.3.3** Scanning Electron-microscope procedure 32
- **3.3.4** Standard curves of heavy metal ions procedure 32
- **3.3.5** Processing of Zeolite 32
- **3.3.6** Removal of Heavy metal ions by Zeolite 33
- **3.3.7** Regeneration of Na-Zeolite 33

Chapter IV

Results and Discussion 34

4.1 Characterization of Zeolite deposits 34

- **4.1.1** Location of deposits 34
- **4.1.2** Physical characteristics 34
- **4.1.3** XRD analysis of deposits 34
- **4.1.4** Internal structure 35
- **4.1.5** Chemical composition of Zeolite 36

4.2 Removal of heavy metal ions by Na-Zeolite 36

- **4.2.1** Lead-containing solution 36
- **4.2.2** Iron-containing solution 37
- **4.2.3** Nickel-containing solution 38

4.3 Conclusions and recommendations 41

Appendix “A” 42

Appendix “B” 47

References 49
List of Tables

<table>
<thead>
<tr>
<th>Title</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table (1) Coordinates of Zeolite deposits</td>
<td>34</td>
</tr>
<tr>
<td>Table (2) The chemical composition of Zeolite</td>
<td>36</td>
</tr>
<tr>
<td>Table (3) Lead on Zeolite ion exchange data</td>
<td>37</td>
</tr>
<tr>
<td>Table (4) Iron on Zeolite ion exchange data</td>
<td>38</td>
</tr>
<tr>
<td>Table (5) Nickel on Zeolite ion exchange data</td>
<td>39</td>
</tr>
<tr>
<td>Table (6) Extraction efficiency for Fe, Pb and Ni</td>
<td>40</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig (1)</td>
<td>Satellite image for the location of Zeolite deposits</td>
<td>35</td>
</tr>
<tr>
<td>Fig (2)</td>
<td>Effect of retention time on the extraction of Pb$^{+2}$ by Zeolite</td>
<td>37</td>
</tr>
<tr>
<td>Fig (3)</td>
<td>Effect of retention time on the extraction of Fe$^{+3}$ by Zeolite</td>
<td>38</td>
</tr>
<tr>
<td>Fig (4)</td>
<td>Effect of retention time on the extraction of Ni$^{+2}$ by Zeolite</td>
<td>39</td>
</tr>
</tbody>
</table>