Dedication CONTENTS	I
Acknowledgements	II
Abstract Arabic	III
Abstract English	IV
Contents	V
List of figures	VII
CHAPTER ONE (Introduction)	
1.1 Motivation	1
1.1.1 Inorganic solar cells	2
1.1.2 Amorphous silicon cells	3
1.1.3 Multi junction	3
1.1.4 Organic solar cells	4
1.2 Objective	5
1.3 Outline of the thesis	6
CHAPTER TWO (Solar cell theorem)	
2.1 The PV cell	7
2.2 The p-n junction	7
2.3 Drift and diffusion current	11
2.4 Solar cell efficiency	16
2.4.1 Energy conversion efficiency	16
2.4.2 Quantum efficiency	17
2.5 Maximum power	18
2.6 Fill factor	18
2.7 The metal-semiconductor junction	18
CHAPTER THREE (Organic solar cells)	
3.1 Introduction	22
3.2 Conjugated polymer	23
3.3 Organic solar cell	27
3.4 Blend cell	28
3.5 Metal contact	31
3.6 General requirements of the photoactive layer	33
3.6.1 Electron Acceptor (PCBM)	35
3.6.2 Electron Donor (MDMO-PPV)and(P3HT)	37
3.6.3 Indium Tin Oxide ITO)	41
3.6.4 (PEDOT:PSS)	42
CHAPTER FOUR(Program Simulation -1D)	
4.1 AMPS and Its Features	44
4.2 Poisons equation	45
4.2.1 The Delocalized (Band) state populations n and p	45
4.3 The continuity equations	46
4.3.1 Electron and hole current density	46
4.3.2 Direct (Band to band) recombination	47
4.3.3 Parameters for representing semiconductor properties	47
4.3.4 Parameters for optical properties	48
4.4 Procedure for running AMPS	48
1.5 How to generate device characteristics	19

Fig.2.1 Across section of a p-n junction	8
Fig.2.2Energy band diagram of a p-n junction in thermal equilibrium	10
Fig.2.3 Concentration carrier of solar cell	14
Fig.2.4 Work function, electron affinity and the barrier height of a metal-semiconductor contact.	21
Fig.3.1 some of the commonly used conjugated organic material	26
Fig.3.2 Blend solar cell	30
Fig.3.3 Energy –band diagram of the BHJ solar cell	32
Fig.3.4 Chemical structure of PCBM	36
Fig.3.5 Chemical structure of MDMO-PPV	38
Fig.3.6 Chemical structure of P3HT	40
Fig.3.7 Chemical structure of PEDOT: PSS	43
Fig.5.1 Variation of the open circuit voltage with HOMO _D -LUMO _A offset	57
Fig.5.2 Variation of the open circuit voltage with temperature, MDMO-PPV and PCBM	59
Fig.5.3 Variation of the efficiency with temperature, MDMO-PPV and PCBM	60
Fig.5.4 Variation of the efficiency with LUMOA-LUMOD, MDMO-PPV and PCBM and P3HTand PCBM	62
Fig.5.5 Variation of the efficiency with the thickness, MDMO-PPV and PCBM solar cell	64

Fig.5.6 Variation of the efficiency with the thickness, P3HTandPCBM solar cell	65
Fig.5.7 Variation of the efficiency with light intensity, MDMO-PPV and PCBM	67