Dedication

I

Acknowledgements

II

Abstract Arabic

III

Abstract English

IV

Contents

V

List of figures

VII

CHAPTER ONE (Introduction)

1.1 Motivation
1.1.1 Inorganic solar cells
1.1.2 Amorphous silicon cells
1.1.3 Multi junction
1.1.4 Organic solar cells
1.2 Objective
1.3 Outline of the thesis

CHAPTER TWO (Solar cell theorem)

2.1 The PV cell
2.2 The p-n junction
2.3 Drift and diffusion current
2.4 Solar cell efficiency
2.4.1 Energy conversion efficiency
2.4.2 Quantum efficiency
2.5 Maximum power
2.6 Fill factor
2.7 The metal-semiconductor junction

CHAPTER THREE (Organic solar cells)

3.1 Introduction
3.2 Conjugated polymer
3.3 Organic solar cell
3.4 Blend cell
3.5 Metal contact
3.6 General requirements of the photoactive layer
3.6.1 Electron Acceptor (PCBM)
3.6.2 Electron Donor (MDMO-PPV)and(P3HT)
3.6.3 Indium Tin Oxide ITO)
3.6.4 PEDOT:PSS

CHAPTER FOUR (Program Simulation -1D)

4.1 AMPS and Its Features
4.2 Poisons equation
4.2.1 The Delocalized (Band) state populations n and p
4.3 The continuity equations
4.3.1 Electron and hole current density
4.3.2 Direct (Band to band) recombination
4.3.3 Parameters for representing semiconductor properties
4.3.4 Parameters for optical properties
4.4 Procedure for running AMPS
4.5 How to generate device characteristics
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Across section of a p-n junction</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Energy band diagram of a p-n junction in thermal equilibrium</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Concentration carrier of solar cell</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Work function, electron affinity and the barrier height of a metal-semiconductor contact</td>
<td>21</td>
</tr>
<tr>
<td>3.1</td>
<td>some of the commonly used conjugated organic material</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Blend solar cell</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Energy –band diagram of the BHJ solar cell</td>
<td>32</td>
</tr>
<tr>
<td>3.4</td>
<td>Chemical structure of PCBM</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Chemical structure of MDMO-PPV</td>
<td>38</td>
</tr>
<tr>
<td>3.6</td>
<td>Chemical structure of P3HT</td>
<td>40</td>
</tr>
<tr>
<td>3.7</td>
<td>Chemical structure of PEDOT: PSS</td>
<td>43</td>
</tr>
<tr>
<td>5.1</td>
<td>Variation of the open circuit voltage with HOMO<sub>D</sub>-LUMO<sub>A</sub> offset</td>
<td>57</td>
</tr>
<tr>
<td>5.2</td>
<td>Variation of the open circuit voltage with temperature, MDMO-PPV and PCBM</td>
<td>59</td>
</tr>
<tr>
<td>5.3</td>
<td>Variation of the efficiency with temperature, MDMO-PPV and PCBM</td>
<td>60</td>
</tr>
<tr>
<td>5.4</td>
<td>Variation of the efficiency with LUMOA-LUMOD, MDMO-PPV and PCBM and P3HT and PCBM</td>
<td>62</td>
</tr>
<tr>
<td>5.5</td>
<td>Variation of the efficiency with the thickness, MDMO-PPV and PCBM solar cell</td>
<td>64</td>
</tr>
<tr>
<td>Fig. 5.6</td>
<td>Variation of the efficiency with the thickness, P3HT and PCBM solar cell</td>
<td>65</td>
</tr>
<tr>
<td>Fig. 5.7</td>
<td>Variation of the efficiency with light intensity, MDMO-PPV and PCBM</td>
<td>67</td>
</tr>
</tbody>
</table>