Effect of Pipeline Transportation On The Properties of Sudanese Crude Oil

A thesis Submitted to the Graduate College, Sudan University of Science and Technology for the Master Degree

By:

Waleed Salih Ebrahim Osman

B. Sc Honours in Chemistry

Sudan University of Science and Technology

Supervised by : Dr Abdalsalam .A.D. Alturabi
Dedication

I dedicate this thesis to my parents and my wife whose encouraged and fully supported me for every trials that comes in way.
Acknowledgment

It is a pleasure to thank the many people who made this thesis possible.

I am heartily thankful to my supervisor Dr. Abd Alslam Altarbibi, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject.

I am grateful to Omer Adam Director of Centeral Petroleum Laboratories (CPL) and my colleagues there, for giving invaluable assistance.

I would also like to convey thanks to Dr. Hisham from Petrodar Company and Eg. Saieed from Greater Nile Company, and Sudan University of Science and Technology for providing facilities.

Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.
Abstract

The objective of this research is to study the effect of pipeline transportation on two types of Sudanese crude oil (Nile blend and Dar blend).

A certain batch of crude oil was traced in the two cases three samples of Nile blend and two samples of Dar blend were taken from various stations in the two pipeline.

All test in this research were performed in Central Petroleum Laboratories (CPL), except the Infrared Spectroscopy wich was done in Sudan University.

After analysis of samples we found that some physical and chemical properties of the two blends have changed of as a result of transportation by pipeline, such as density, viscosity, flash point and acidity and in the concentration of some metal like Iron and Nickel.
الخلاصة

الهدف من هذا البحث هو دراسة تأثير الأنابيب على مواصفات الخام السوداني (مزيجي النيل والدار نموذج جا).

تم تتبع دفع واحد من الخام في الحالتين حيث اخذت 3 عينات من مزيج النيل وعينتين من خام الدار من محطات مختلفة في الخطين الناقلين.

اجريت كل الاختبارات الواردة في هذا البحث بمختبرات النفط المركزية باستثناء اختبار الأشعة تحت الحمراء الذي اجري بجامعة السودان.

بعد إجراء التحليل وجد ان بعض الخصائص الفيزيائية والكيميائية ظهرت عليها بعض التغيرات صعودا أو هبوطا نتيجة للنقل بواسطة الأنابيب مثل
List of content

Dedication .. ii
Acknowledgment ... iii
Abstract ... iv
الخلاصة ... v
List of content ... vi
List of tables ... x
List of figures .. xi

Chapter one Introduction and Literature Review

1. Introduction ... 1
1.1 History of Exploration in Sudan 1
1.2 Chemistry of Crude Oil 2
1.3 Composition of Crude Oils and Petroleum Products 3
1.3.1 Pure components 3
1.5.2.7 Total Dissolved Solids (TDS) 28
1.5.2.8 Temperature 28
1.5.2.9 Specific Gravity 28
1.5.2.10 Electrical Resistivity 29
1.5.2.11 Dissolved Oxygen 29
1.5.2.12 Dissolved Carbon Dioxide 30
1.5.2.13 Sulfide as H₂S 30
1.5.2.14 Bacterial population 30
1.5.2.15 Oil Content 30
1.5.2.16 Silica 31
1.6 Pipeline Fundamental 32
1.6.1 Introduction 32
1.6.2 Pipe 33
1.6.3 Pipe Size 33
1.6.4 Pipe Wall Thickness 35
1.6.5 Piping classification 36
1.7 Pipe materials 38
1.8 Pipes of this study 39
1.8.1 GNPOC Pipeline 39
1.8.2 Petrodar Pipeline 40
1.9 Objective of this Study 41

Chapter two Materials and methods

2.1 Sampling 42
2.2 Equipments and instruments

2.2.1 Equipments

2.2.2 Metal content

2.2.3 Saturated hydrocarbons

2.2.4 IR spectroscopy

2.2.5 Chemicals

2.2.6 General Apparatus

2.3 Determination of Density, API, SG

2.3.1 Significance and Use

2.3.2 Apparatus

2.3.3 Reagents and Materials

2.3.4 Test Method

2.4 Determination of Kinematic Viscosity

2.4.1 Significance and Use

2.4.2 Apparatus

2.4.3 Reagents and Materials

2.4.4 Test Method

2.5 Determination of pour point

2.5.1 Significance and Use

2.5.2 Apparatus

2.5.3 Reagents and Materials

2.5.4 Test Method

2.6 Flash point
Chapter three Results & Discussion
3.1 Results

3.1.1 Physical Properties

3.1.2 Chemical Properties

3.1.3 Results of GC

3.1.4 Atomic Absorption Results

3.1.5 IR Spectroscopy Results

3.1.6 Record of Dar and Nile blend at 2006

3.2 Discussion

3.2.1 Density and Kinematic viscosity

3.2.3 Pour point

3.2.4 flash point

3.2.5 Ash content

3.2.6 Total acid number

3.2.7 Concentration of saturated hydrocarbon(Gc)

3.2.8 Metal Content

3.2.9 Water and Carboxylic acieds (IR Spectroscopy)

Conclusion

References

Appendix
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1.1)</td>
<td>physical constant of selected alkanes</td>
<td>6</td>
</tr>
<tr>
<td>(1.2)</td>
<td>physical constant of selected cycloparaffins</td>
<td>8</td>
</tr>
<tr>
<td>(1.3)</td>
<td>summarizes data for these aromatic hydrocarbons</td>
<td>12</td>
</tr>
<tr>
<td>(1.4)</td>
<td>physical constant of selected unsaturated hydrocarbons</td>
<td>14</td>
</tr>
<tr>
<td>(1.5)</td>
<td>Pipe Size Designators: NPS and DN</td>
<td>35</td>
</tr>
<tr>
<td>(1.6)</td>
<td>Piping Class</td>
<td>36</td>
</tr>
<tr>
<td>(1.7)</td>
<td>GNPOC Pipeline and Pump Station</td>
<td>37</td>
</tr>
<tr>
<td>(1.8)</td>
<td>Petrodar Pipeline Spacing</td>
<td>40</td>
</tr>
<tr>
<td>(2.1)</td>
<td>Methods and Equipments</td>
<td>42</td>
</tr>
<tr>
<td>(3.1)</td>
<td>Physical Properties for Nile Blend</td>
<td>57</td>
</tr>
</tbody>
</table>
List of Figures

Table (3.2) Physical Properties for DAR Blend 58
Table (3.3) Chemical Properties for Nile Blend 58
Table (3.4) Chemical Properties for Nile Blend 59
Table (3.5) GC(for Saturated Compounds) Sample A 60
Table (3.6) GC(for Saturated Compounds) Sample B 62
Table (3.7) GC(for Saturated Compounds) Sample C 64
Table (3.8) GC(for Saturated Compounds) Sample D 66
Table (3.9) GC(for Saturated Compounds) Sample E 68
Table (3.10) Metal Content Sample A 70
Table (3.11) Metal Content Sample B 70
Table (3.12) Metal Content Sample C 71
Table (3.13) Metal Content Sample D 71
Table (3.14) Metal Content Sample E 72
Table (3.15) Average of Nile blend at 2006 78
Table (3.16) Average of Dar blend at 2006 79
Figure (1) Result of QC for Nile blend (Sample A Heglig)
Figure (2) Result of QC for Nile blend (Sample B Algyli)
Figure (3) Result of QC for Nile blend (Sample C Bashir)
Figure (4) Result of QC for Dar blend (Sample D Aljableen)
Figure (5) Result of QC for Dar blend (Sample E Portsudan)
Figure (6) Result of IR for Nile blend (Sample A Heglig)
Figure (7) Result of IR for Nile blend (Sample B Algyli)
Figure (8) Result of IR for Nile blend (Sample C Bashair)
Figure (9) Result of IR for Dar blend (Sample D Algabaleen)
Figure (10) Result of IR for Dar blend (Sample E Portsudan)
Figure (11) Density Evaluation for Nile Blend
Figure (12) Density Evaluation for Dar Blend
Figure (13) Kinematic viscosity Evaluation for Nile Blend
Figure (14) Kinematic viscosity Evaluation for Dar Blend
Figure (15) Pour point Evaluation for Nile Blend
Figure (16) Pour point Evaluation for Dar Blend
Figure (17) flash point Evaluation for Nile Blend
Figure (18) flash point Evaluation for Dar Blend
Figure (19) Ash content Evaluation for Nile Blend
Figure (20) Total acid number Evaluation for Nile Blend
Figure (21) Total acid number Evaluation for Dar Blend
Figure (22) GC Evaluation for Nile Blend (light Paraffins)
Figure (23) GC Evaluation for Dar Blend(light Paraffins)
Figure (24) GC Evaluation for Nile Blend (paraffin waxes)
Figure (25) Fe Evaluation for Nile Blend
Figure (26) Metal Content Evaluation for Dar Blend
CHAPTER ONE
INTRODUCTION AND LITERATURE REVIEW
CHAPTER TWO

METHODS AND MATERIAL
CHAPTER THREE
RESULTS AND DISCUSSION
REFERENCES